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An equation is derived for describing wave evolution on the surface of a vertically falling viscous film. The
traditional long-wavelength scaling is replaced by a new scaling to reduce the two dimensional Navier-Stokes
equations to a single evolution equation for the scaled film thicknesshsx,td. The scaling suggests that the
Weber numbersWed must be used instead of the Reynolds numbersRed to distinguish between viscous and
inertia dominated regimes for vertically falling films. This equation includes viscous dissipation and pressure
correction terms that are missing in the existing single evolution equations at the same order. Comparison of
the neutral stability curves and growth rates predicted by different models to that of the Orr-SommerfeldsOSd
equation shows that our equation matches with the OS results better than the existing single evolution equa-
tions. However, our equation is not free from finite time blowup. Selective regularization leads to a two mode
model in flow rate and film thickness. The regularized equation is free from finite time blowup and predicts two
families of solitary waves. Numerical simulations of the derived equation and its regularized version in the
traveling wave coordinate show the transition of wave structure from regularsperiodicd to chaotic profiles.
Model predictions on maximum wave amplitude on the low celerity branch show good agreement with
experimental data.
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I. INTRODUCTION

Wave formation on vertically falling films has been inves-
tigated extensively in the last half century since the early
work of Nusseltf1g and Kapitza and Kapitzaf2g. Benjamin
f3g showed that film flow down a vertical wall is unstable at
all Reynolds numberssRed. Surface waves which arise as a
result of this instability are observed to show a complex and
rich spectrum of behaviorf4,5g. It is now well established
both experimentally and theoretically that these waves ex-
hibit spatiotemporal chaos at any Re.0. A major unsettled
question is whether there exists a low-dimensional model
that can describe the wave amplitudes observed in the ex-
periments qualitatively and quantitatively.

One of the approaches used to derive low-dimensional
models is the long-wavelength type perturbation expansion
which gives a single evolution equation for the film thick-
ness. For example, for the case of two dimensional Navier-
Stokes sNSd equations, we have the well known long-
wavelength equation derived by Benneyf6g:
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whereh is the scaled film thickness, Re is the film Reynolds
number, and We is the Weber number. A weakly nonlinear
truncation si.e., expanding around Re=0,h=h−1=0, and
keeping only linear and quadratic termsd of the long-
wavelength equation gives the widely studied Kuramoto-
Sivashinsky equationsafter scalingx, t, andhd:

hT + hhX + hXX + hXXXX= 0. s2d

An alternate approach based on integral boundary layer tech-
niques is also used to derive low-dimensional models for
film flow. In this approach, the long-wavelength scaling is
combined with an assumed velocity profile and the equations
of motion are averaged in the direction perpendicular to the
flow. A well known model derived using this approach is the
Shkadov model:
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whereh is the film thickness andq is the local flow rate.
Recent experimental dataf7g on wave amplitudes have

shown that the above Eqs.s1d–s3d cannot describe the ob-
served wave amplitudes. The main reason for this is attrib-
uted to the omission of some viscous dissipation terms.
Though higher order long-wavelength expansions by Gjevik
f8g and Nakayaf9g include viscous dissipation terms, it was
shown recentlyf7g that they too cannot capture the film be-
havior quantitatively. Improved versions of the Shkadov
model, known as the three equation modelssfor film thick-
ness, flow rate, and wall shear stressd, derived by Ruyer-Quil
and Mannevillef10g and Nguyen and Balakotaiahf7g, can
describe the wave amplitudes quantitatively and are simpler
than the Navier-Stokes equations but they are not as appeal-
ing as the single equation models.

The main objective of the current work is to derive a
low-dimensional model that can describe the wave ampli-
tudes both qualitatively and quantitatively. Our approach for
deriving the model equation is different from those in the*Corresponding author. Email address: bala@uh.edu
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literature and is detailed here. The new evolution equation
also predicts qualitatively the recent experimental observa-
tions on wave suppression in viscous films at Weber numbers
of order unity.

A summary of this model and its predictions are given in
Panga and Balakotaiahf11g. In this paper, we present the
derivation of the evolution equation along with its regular-
ized form, bifurcation analysis of the model in the traveling
wave coordinate, additional numerical results, and compari-
son with experimental data.

II. GOVERNING EQUATIONS

We consider the flow of a liquid film down a vertical wall
under the action of gravity. The effects of the gas phase on
the film are assumed to be negligible. This assumption is
good as long as the gas phase is quiescent and its density and
viscosity are negligible compared to the liquid phase. Figure
1 shows a schematic of the two dimensional flow. The coor-
dinate axes are chosen such that thex axis points in the flow
direction and they axis in the direction perpendicular to the
flow. The basic equations and boundary conditions describ-
ing the flow are given by the two dimensional Navier-Stokes
equationss4d–s9d:
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whereu=su8 ,y8d is the velocity vector,p8 is the pressure,
h8sx8 ,t8d is the height of the filmsmeasured from the walld, g
is the acceleration due to gravity,m is the viscosity,n is the
kinematic viscosity,s is the surface tension, andpo8 is the
pressure in the gas phase adjacent to the film. The prime
denotes dimensional variables. The boundary conditions are
given by Eq.s6d–s9d. Equationss6d and s7d represent the no
slip boundary condition at the wall and the kinematic bound-
ary condition at the interface, respectively. The continuity of
tangential and normal stresses at the interface is described by
Eqs.s8d and s9d, respectively.

One of the solutions to the above set of equations is the
flat film solution sNusselt’s solutiond obtained by balancing
the viscous and gravitational forces. The velocity profile for
the flat film solution is given by

u8 =
ghN

2

2n
F2S y8

hN
D − S y8

hN
D2G . s10d

We use Nusselt’s flat film solution to define an average Nus-
selt velocityuN=ghN

2 /3v. Equationss4d–s9d are made dimen-
sionless by choosing average velocityuN and flat film thick-
ness hN as characteristic velocity and length scales,
respectively. The resulting dimensionless variables and di-
mensionless groups are shown below:
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The system hastwo independent dimensionless groups, the
Reynolds numbersRed and the Kapitza numbersKad. Since
the Kapitza number is only dependent on the fluid physical
properties, it is constant for a given fluid. We also use the
Weber numbersWed which is related to Re and Ka as fol-
lows:

FIG. 1. Schematic diagram of film flow down a vertical wall.
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whereC=31/345/3. The dimensionless equations are given by
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III. SCALING

The two-dimensional Navier-stokessNSd equations
s12d–s18d are traditionally reduced to a single evolution
equation using a perturbation expansion in terms of the wave
numbera, along with the assumptions Re,Os1d anda2 We
,Os1d. For example, the equation for the case of large We-
ber number,a2 We,Os1d, truncated atOsad gives the long-
wavelength equationsLWd
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We derive a single evolution equation using a long-
wavelength expansionsa!1d, for the case of large Weber
numbera2 We,Os1d. However,unlike the long-wavelength
scaling, we assumeKa,Os1d and do not impose any direct
restriction on the Reynolds number. The resulting equation
truncated atOsa2.2d is given by
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An interesting feature of Eq.s20d is that it has viscous dis-

sipation and pressure correction terms, 3h4hxx and 7h3hx
2,

which are missing in the LW equations19d. We find that
these terms are essential to capture the qualitative behavior
of wave evolution and hence are required for describing
waves on viscous films quantitatively. In addition, replacing
the time derivative by the spatial derivative in the term
−5/32Reh4ht, as done in the LW equations19d, leads to non-
physical wave celerities and poor quantitative agreement
with experimental data. The difference between our scaling
and the traditional long-wavelength scaling is discussed in
the remaining part of this section.

Long-wavelength scaling parameteras=2phN/ld is intro-
duced into the systems12d–s18d by scaling the length in the
flow direction with l /2p where l is an unknown wave-
length. The wave numbera is assumed to be small. The NS
equations are then reduced to a single evolution equation by
an asymptotic expansion ina along with the long-
wavelength scaling Re,Os1d anda2 We,Os1d. The valid-
ity of the assumption,a being small, depends on the magni-
tude of the parameters Re and Wef15g. For large Weber
numbers, this is a reasonable assumption because the waves
on the surface of a falling film are observed to have long
wavelengths compared to the thickness of the film for We
@1 f18g. Assuminga is small, the long-wavelength expan-
sion when truncated atOsad gives the long-wavelength
equations19d. At the lowest order in the expansion, viscous
and gravitational forces balance each other and corrections to
the lowest order solution come from the inertial and capillary
terms. Notice that, in this procedure, irrespective of the mag-
nitude of the viscous and inertial forces in the film, the cor-
rection to the lowest order solution always comes from iner-
tial terms. Viscous terms, which play an important role in
governing the dynamics of the small amplitude waves and
thin films are missing in the correction to the lowest order
solution in the long-wavelength expansion. Because of these
missing terms, the long-wavelength equation does not pre-
dict wave dispersion and overpredicts the critical wave num-
bers as compared to those predicted by the Orr-Sommerfeld
equations obtained by linearizing NS equations. To include
the viscous terms, long-wavelength expansion is carried to
higher ordersf8,9g. These higher order approximations bring
in the viscous terms but they contain more inertial terms
ssuch as Re2, Re3, etc.d than the dissipative terms and there-
fore the imbalance between inertial and viscous effects
present at lower orders persists at higher orders. Hence car-
rying the expansion to a higher order failsf7g to rectify the
problem.

Intuitively, the terms that correct the lowest order solution
depend on the relative importance of viscous, inertial, and
capillary forces in the film. Traditionally, the Reynolds num-
ber is used to differentiate between viscous and inertia domi-
nated regimesse.g., flow in a piped. For falling films, the
velocity and film thickness used in the definition of Reynolds
number are not independent of each other and hence, the
Reynolds numbersRed alone is not sufficient to distinguish
between inertia and viscous dominated regimes. This leads to
the question whether there is a parameter whose magnitude
is indicative of the relative importance of the inertial terms
compared to viscous and/or capillary terms. If such a param-
eter exists, then its magnitude would allow us to determine
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the terms that correct the lowest order solution. Here, we
argue that the Weber number plays such a role. Irrespective
of the Kapitza number or the fluid, a large Weber number
s1/We→0d implies that viscous or capillary effects are
dominant in the film compared to the inertial effects and a
small Weber numbersWe→0d represents strong inertial ef-
fects. For example, let us consider two fluids one being water
and the other a 95% gylcerin solution. The Kapitza numbers
for these fluids are 3371 and 0.24, respectively. For Reynolds
number of unitysRe=1d the Weber numbers for these fluids
are 48 980 and 3.48, respectively. The thickness of the water
film for Re=1 is 0.0425 mm while for glycerin solution it is
4.25 mm. When compared to the water film at the same Rey-
nolds number, the glycerin film has a thickness which is
hundred times larger than that of water. While viscous forces
are dominant in the thin water film for Re=1, inertial forces
may also become important in the glycerin film which is
thick at the same Reynolds numbersRe=1d. The above com-
parison shows that for the same Reynolds number, either
viscous or both viscous and inertial forces can become im-
portant depending on the Kapitza number. Hence the magni-
tude of the Reynolds number is not indicative of viscous or
inertia dominated regimes, whereas for the water film where
viscous effects are dominant, the Weber number is large and
for the glycerin film where viscous and inertial effects may
be of equal order, the Weber number is of order unity. Unlike
the Reynolds number, a large Weber number implies viscous
dominated regime and a small Weber number represents the
inertia dominated regime for falling films. Thus the correc-
tion to the lowest order solution depends on the Weber num-
ber, not on the Reynolds number.

We replace the assumption of Re,Os1d by Ka,Os1d in
the long-wavelength scaling and retain the large Weber num-
ber assumptiona2 We,Os1d, to derive a single evolution
equation. Rearranging the relation between We, Ka, and Re
fEq. s11dg and using the scaling Ka,Os1d and a2 We=W
,Os1d we get

Re =sC Kad3/5S 1

We
D3/5

= SC Ka

W
D3/5

a6/5 = ba6/5, s21d

where b=sC Ka/Wd3/5 is an Os1d parameter. The scaling
Re=ba6/5 suggests that viscous effects should be given more
importance than inertial effects while deriving evolution
equations for large Weber numberssWe@1d. Viscous and
inertial effects are of equal order when We,Os1d. Inertial
effects are dominant in the film for We!1. The large Weber
number limitsWe@1d where viscous or capillary effects are
strong is referred to as theviscocapillary regime f12g. In
terms of the Reynolds number, the viscocapillary regime cor-
responds to 0,Re!4*31/5Ka3/5s<5 Ka3/5d. The range of
Reynolds numbers which define the viscocapillary regime
depends on the Kapitza number. For Reynolds numbers out-
side this range, inertial effects become important. Thus for
small Ka numbers inertial effects can become important at
low Reynolds numbers. Taking We=1 as the cutoff point, the
viscocapillary regime for watersKa=3371d corresponds to
0,Re!650, while for 95% glycerin solutionsKa=0.24d it
is defined by 0,Re!2.0. In the example discussed before

for Re=1, water is well within the viscocapillary regime,
whereas glycerin falls on the boundary where viscous and
inertial effects are of equal importance.

The advantages of using the scaling Ka,Os1d and
a2 We,Os1d instead of the long-wavelength scaling Re
,Os1d and a2 We,Os1d can be seen from linear stability
results of the NS equations. Figure 2 shows the neutral sta-
bility curves obtained from the Orr-Sommerfeld equations
for different fluids or Kapitza numbers. In this figure, the
neutrally stable wave number is plotted against Re for differ-
ent Ka numbers. However, when the same neutral curves are
plotted with the reciprocal of Weber numbersFig. 3d, it is
interesting to notice that all the curves collapse onto a single
curve for large Weber numbers1/We→0d and tend to re-
main close up to Weber numbers of order unity. In these
plots the Kapitza number is varied between 1 and 3371. Even
for large variation in the Kapitza number, in the limit
1 /We→0, the results are independent of Ka number as
stated earlier, and weakly dependent on Ka for Weber num-
bers of order unity, whereas the neutral stability curves re-
main distinct when plotted with Reynolds number even in
the limit Re→0. Another observation to be made from Fig. 3
is that the critical wavelengthac remains small as long as the
Weber number is large irrespective of the Kapitza number.
Thus the long-wavelength assumptiona!1 is valid for large
Weber number,a2 We,Os1d.

In the next section, we discuss the perturbation expansion
with the new scaling Ka,Os1d anda2 We,Os1d. The ex-
pansion, unlike the traditional long-wavelength expansion,
corrects the lowest order solution with viscous and pressure

FIG. 2. Neutral stability curves obtained from Orr-Sommerfeld
equations for different fluids.

FIG. 3. Neutral stability curves in Fig. 2 are plotted with the
reciprocal of Weber number.
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terms in the viscocapillary regime. A major improvement in
our model derived using this scaling is that it restores a bal-
ance between inertial and viscous effects at the lowest order.

IV. PERTURBATION EXPANSION

We introduce the scaling Ka,Os1d and a2 We=W
,Os1d into the dimensionless equationss12d–s18d. The new
dimensionless coordinatessX, Y, td and variablessU, V, Pd
expressed in terms of the old dimensionless coordinates and
variables are shown below:

X = ax, Y = y, t = at,

u = U, y = aV, p = P.

Since the resulting system of equations after introducing the
scaling contains fractional powers ofa, a new parameterg is
used in place ofa to eliminate the fractional powers. The
relationship between the parametersg anda, and the scaling
in terms ofg is shown in Eqs.s22d–s24d:

g = a1/5, s22d

a = g5, g10 We =W, Os1d, s23d
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where b=sC Ka/Wd3/5,Os1d. The scaled equations are
given by
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V = ht + UhX for Y = hsX,td, s29d

sUY + g10VXds1 − g10hX
2d + sVY − UXds2g10hXd = 0

for Y = hsX,td, s30d
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2

+ bWg6 hXX
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Due to the way the perturbation parameterg appears in the
scaled equations, corrections to the lowest orderOsgod are
only made atOsg5d, Osg6d, Osg10d, Osg11d, Osg15d, Osg16d,
and so on. The lowest orderOsgod equations are given by
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The solution to this set of equations is

Uo = −
3Y2

2
+ 3hY, Vo = −

3hXY2

2
, Po = 0. s34d

The evolution equations35d at this order is obtained by sub-
stituting the velocities in the kinematic boundary condition.
This equation is the same as obtained by simple long-
wavelength scaling at the lowest order:

] h

] t
+ 3h2hX = 0. s35d

The above equation describes the evolution of waves with
infinitely long wavelengths. When the wavelength becomes
finite, the expansion should be carried to higher orders.
Equationss36d ands37d show the corrections to velocity and
pressure atOsg5d andOsg6d, respectively.

U5 = V5 = 0, P5 = − 12hXY − 12hhX, s36d

U6 = V6 = 0, P6 = − bWhXX. s37d

Only pressure is corrected at these orders. Since there is no
correction to the velocities, the evolution equation remains
the same as Eq.s35d. However, it should be observed that
pressure gets corrected first, unlike the long-wavelength ex-
pansion where pressure correction is pushed to higher orders.
The equations atOsg10d are given by
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] X
Ds2hXd = 0 at Y = hsX,td.

s38d

Notice that at this order the corrections to the velocity come
from the viscous and pressure terms, whereas the correction
to the lowest order comes from the inertial terms in the tra-
ditional long-wavelength expansion. Equationss38d include
viscous terms in both thex-momentum equation and the tan-
gential stress boundary condition. The evolution equation at
Osg10d is given by Eq.s39d:

] h

] t
+ 3h2hX + g10 ]

] X
f3h4hXX + 7h3hX

2g = 0. s39d

The governing equations atOsg11d are given by
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From the governing equations atOsg11d, it can be seen that
inertial and surface tension termssin the form of pressure
correctiond affect the solution and the evolution equation at
this order is given by
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In terms of the wave number,
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where we have grouped terms of the same order. If the per-
turbation expansion is carried in terms ofa instead ofg, the
correction to the evolution equation is made at ordersa2,
a11/5, a4, a21/5, a22/5, and so on. We truncate the perturbation
expansion atOsa11/5d or Osg11d since it has all three viscous,
inertial, and pressure corrections included in it. Removing
the scaling from Eq.s42d , the evolution equation can be
written in the old dimensionless variables as

] h
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] x
F3h4hxx + 7h3hx
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+
Re We

12
h3hxxxG = 0. s43d

Evolution equation at the next order can be obtained by trun-
cating the equation atOsa22/5d. In case of inclined films, an
additional term, −] / ]xscotuh3hxd appears in the left-hand
side of Eq.s43d, whereu is the angle of inclination with the
horizontal.

Exchange of time and spatial derivative

Equations43d can be further simplified by replacing the
time derivative in the term5

32Reh4ht with a spatial derivative.

Since 5
32Reh4ht is anOsg11d term, the time derivative term is

replaced by its zeroth order approximation,

ht = − 3h2hx + Osg10d.

The terms ofOsg21d are neglected. The evolution equation
obtained after exchanging the time derivative with a spatial
derivative is given by

ht + 3h2hx +
]

] x
F3h4hxx + 7h3hx

2 +
3

10
Reh6hx

+
Re We

12
h3hxxxG = 0. s44d

A similar exchange of time derivative with the spatial deriva-
tive in the expansion using traditional long-wavelength scal-
ing gives LW equations19d. While this approximation is
good for g→0 or 1/We→0, we observe that for large but
finite Weber numbers the predictions of Eq.s44d are both
qualitatively and quantitatively different from those of Eq.
s43d. Comparing the maximum wave amplitudes obtained
from the two equationss43d and s44d to experimental data
shows that Eq.s43d describes the wave evolution on viscous
films more accurately and retains the qualitative features of
the Navier-Stokes equations up to Weber numbers of order
unity. Benjaminet al. f13g made similar observations with
the Korteweg-de VriessKdVd equation. When the spatial de-
rivative in the KdV equation was replaced by time deriva-
tive, the equation was found to have better properties.

V. COMPARISON OF EVOLUTION EQUATIONS

In this section, we compare our equations43d with some
of the existing evolution equations. When compared to the
long-wavelength equation,

] h

] t
+ 3h2hx + a

]

] x
F 3

10
Reh6hx +

Re We

12
h3hxxxG = 0,

it can be seen that in our scaling there are no terms of order
a and the viscous dissipation terms appear at ordera2 while
the inertial and surface tension terms appear at ordera2.2. In
the long-wavelength scaling, the viscous and pressure correc-
tion terms are missingsat orderad while the inertial and
surface tension terms appear at ordera. Moreover, the mixed
derivative in space and time is replaced with the spatial de-
rivative in the long-wavelength equation.

Frenkel and Indireshkumarf14g derived an evolution
equation based on minimal requirement of derivability
sMRDd principle. Their equation obtained by combining the
long-wavelength expansion with amplitude expansion is
given by

ht + 3hx + 6hhx +
3

10
Rehxx +

Re We

12
hxxxx+ 3hxxx= 0.

s45d

Comparing Eq.s45d to our equation in the weakly nonlinear
form,
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ht + 3hx + 6hhx + 3hxxx−
5

32
Rehxt −

27

160
Rehxx

+
Re We

12
hxxxx= 0, s46d

it can be seen that the time derivative is exchanged with a
spatial derivative in Eq.s45d. The weakly nonlinear form of
the evolution equations are only valid in the region where
wave amplitudes are very small. Since the parameter region
where wave amplitudes remain small is very narrow, the
above equations are limited to a narrow region.

Ooshida f15g developed a regularized long-wavelength
equation using Padé type approximation to increase the con-
vergence boundaries of the long-wavelength equation. The
regularized long-wavelength equation derived by Ooshida is
given by

ht −
]

]x
sh2]x]thd +

]

]x
Fh3 −

5

14
Reh4ht −

27

35
Reh6hx

+
ReWe

12
h3hxxxG = 0. s47d

When compared to our equation, Ooshida’s equation has an
extra time derivative term and does not have the viscous and
pressure correction termss3h4hxx and 7h3hx

2d present in our
equation. Interestingly, when the time derivative in the sec-
ond term of Ooshida’s equation is replaced with the approxi-
mation ht=−3h2hx, Ooshida’s equation reduces to the form
of our new equations43d with different numerical constants.
The numerical constants are different because of the regular-
ization procedure. The modified Ooshida’s equation is given
by

ht + 3h2hx +
]

] x
F3h4hxx + 6h3hx

2 −
5

14
Reh4ht −

27

35
Reh6hx

+
Re We

12
h3hxxxG = 0. s48d

Linear stability analysis of Ooshida’s equations47d shows

that the regularization procedure overstabilizes the system.
The reason for this overstabilization may be because of re-
placing the spatial derivative in the viscous and pressure cor-
rection terms with the time derivative. In the limit of We
→`, both the equations are similar, because the time deriva-
tive can be replaced by a spatial derivative and vice versa.
However, for large but finite Weber numbers, use of time
derivative instead of spatial derivative in the viscous and
pressure correction terms introduces a stabilizing effect
which is not present in the physical system. This will be
shown using linear stability analysis in the next section.

VI. LINEAR STABILITY ANALYSIS

We verify the consistency and accuracy of our model by
comparing the linear stability results of our Eq.s43d to that
of Orr-SommerfeldsOSd equation obtained by linearizing the
Navier-Stokes equations around the flat film solution. Equa-
tion s43d when linearized around the Nusselts flat film solu-
tion h=1 gives

ht + 3hx + 3hxxx−
5

32
Rehtx −

27

160
Rehxx +

Re We

12
hxxxx= 0,

s49d

where hsx,td is the deviation from the flat film thickness,
hsx,td=1+hsx,td. We introduce sinusoidal perturbations
stemporal formulationd of the form

h = deiasx−Cetd s50d

into the linearized equations49d. Hered is the wave ampli-
tude,a is the wave number and Ce=Cer +iCei is the celerity.
The real part of celerity Cer gives the speed of the waves and
imaginary part Cei gives the growth rate of the waves. The
waves are unstable if the growth rate Cei is positive and vice
versa. Substituting Eq.s50d into Eq. s49d yields the disper-
sion relation

− ia Ce + 3ia − 3ia3 −
5

32
Rea2 Ce +

27

160
Rea2

+
Re We

12
a4 = 0. s51d

The wave celerity Cer and growth rate Cei could be obtained
by separating the real and imaginary parts of the dispersion
relation. The wave celerity and growth rate for different
single evolution equations are given below.

Equations43d:

Cer =

3 +S 135

5120
Re2 − 3Da2 +

5

384
Re2 Wea4

1 +
25

1024
Re2a2

, s52d

FIG. 4. Wave celeritysCerd vs a for Ka=10.0 and Re=5.0.
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Cei =

3

10
Rea − S15

32
+

We

12
DRea3

1 +
25

1024
Re2a2

. s53d

Equations44d:

Cer = 3s1 − a2d, s54d

Cei =
3

10
Rea −

Re We

12
a3. s55d

Long-wavelength equations19d:

Cer = 3,

Cei =
3

10
Rea −

Re We

12
a3.

Comparing the wave celerities obtained from the three equa-
tions, it could be seen that the wave speed predicted by Eqs.
s44d ands19d are independent of the parameters Re and We,
which is not the case in the real experiment. While the LW
equations19d shows no dispersion, i.e., all the wavelengths
travel with equal velocity, the wave speeds predicted by Eq.
s44d can become negativefEq. s54dg for values ofa greater
than 1. This would lead to nonphysical upstream propagation
of waves with wave numbers greater than 1. Both these prob-
lems are rectified in Eq.s43d.

Comparison of model predictions with Orr-Sommerfeld
results

Figures 4 and 5 show the wave celeritiessCerd and growth
ratessaCeid obtained from Eqs.s43d and s44d, and OS as a
function a for Ka=10 and Re=5. As mentioned earlier, the
wave celerites and growth rates predicted by Eq.s43d are in
better agreement with the OS than those of Eq.s44d. Equa-

tion s44d predicts unusually large growth rates and amplifies
even the shorter wavelengths. Hence the presence of short
wavelengths or noise in the system is amplified when Eq.
s44d is used to describe wave evolution though the short
wavelengths are normally damped in the real system. Growth
rate predictions of LW equations19d are the same as Eq.
s44d.

The critical wave numbersacd for neutrally stable waves
is obtained by setting growth rate Cei =0 in Eq. s53d:

ac = 1 3.6

45

8
+ We2

1/2

. s56d

It follows from Eq. s56d that for We@1 the neutral wave
number approaches the limitspredicted by the long-
wavelength as well as the OS equationsd

ac =Î3.6

We
.

However, for any finite value of We,ac given by Eq.s56d
never exceeds 0.8 while that predicted by the long-
wavelength model is unboundedsas the Weber number, We
!1d. Again, it is the viscous dissipation terms that arrest the
growth of short wavelengths. Figure 6 shows the neutral sta-
bility curves of different models for Ka=10 as a function of
the reciprocal of the Weber number. The region that lies be-
low the neutral stability curve is unstable and the region
above it is stable. A comparison of the evolution equations
fLW, Nakaya, Ooshida equations43d, and its regularized ver-
sion given by Eq.s77dg shows that the new equations43d
remains close to the OS in the viscocapillary regime. The
long-wavelength and Nakaya models diverge from the OS
within the viscocapillary regime. For very large Weber num-
bers, the new equation, Ooshida’s equation and OS predict
the same critical wave number. However, Ooshida’s equation
under predicts the critical wave number for values of 1/We

FIG. 5. Growth ratesaCeid vs a for Ka
=10.0 and Re=5.0.
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away from zero. This overstabilizing effect in Ooshida’s
equation is due to replacing the spatial derivatives in the
viscous and pressure correction terms with time derivative
during the regularization procedure. The viscous and pres-
sure correction terms do not have time derivatives in the
regular long-wavelength expansion. The neutral stability
curves predicted by Eq.s44d are the same as the LW equation
though the celerities predicted by it are different from that of
the LW equation. Figure 7 shows the critical celerity plots
predicted by our equation, its regularized version and other
equations.

VII. LOCAL BIFURCATION ANALYSIS

Linear stability results show that the evolution equation
s43d is better than the existing single evolution equations in
the viscocapillary regime and preserves the qualitative fea-
tures outside this region. In this section, we present results of
local nonlinear analysis on Eq.s43d in the traveling wave
coordinate system. We study the waves that travel with a
constant shape and velocity, in a coordinate system moving
with the wave velocitysCed. Though the case considered
here is an idealization of what is observed, it still gives use-
ful information on the wave structure and maximum wave
amplitudes that could be attained, especially for Kapitza
numbers of order unitysviscous filmsd. Introducing the
steady traveling wave coordinate changesz=x−Ce t, ] /]x
=] /]z, ] /]t=−Ce] /]z, Eq. s43d can be reducedsafter inte-
grating onced to a set of three ordinary differential equations
given by

dh1

dz
= h2,

dh2

dz
= h3,

dh3

dz
= −

12 Ca

h1
3 sCe − Ceh1 + h1

3 − 1 + 3h1
4h3 + 7h1

3h2
2d

−
15

8 We
Ce h1h2 +

81

40 We
h1

3h2, s57d

wheresh1,h2,h3d=sh,hz,hzzd and Cas=1/Re Wed is the cap-
illary number. The dynamics of the vector fields57d can be
studied by integrating the ordinary differential equations nu-
merically for given values of Reynolds and Kapitza numbers,
varying the value of celeritysCed. Asymptotic solutions to
Eqs.s57d represent wave forms traveling with constant shape
and velocity. Possible solutions include fixed points, periodic
wave forms, and trajectories connecting fixed pointssho-
moclinic and heteroclinic orbitsd. A physical interpretation of
each of these solutions can be found in Pumiret al. f16g and
Changf17g. The fixed points of the system can be obtained
by setting the derivatives on the left-hand side of Eqs.s57d to
zero and are given by Eqs.s58d and s59d,

hss1 = 1, s58d

hss2 = −
1

2
+ÎCe −

3

4
. s59d

The first fixed points58d is the Nusselt’s flat film solution
and the second fixed point corresponds to the substrate film
thickness. The two steady states intersect at Ce=3 and the
system undergoes a transcritical bifurcation at this point. The
flat film solution is stable for celerity values less than 3 and
unstable for celerity above 3. For a given set of parameters

FIG. 7. Critical celerity curves for Ka=10.

FIG. 6. Neutral stability curves for Ka=10.
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sCe,We,Cad, information on the stationary solutions other
than the fixed points to the vector field near the flat film
solution can be obtained by evaluating the eigenvalues of the
linear part of the vector field,

L =1
0 1 0

0 0 1

− 12s3 − CedCa −
36

10 We
+

60

32

s3 − Ced
We

− 36 Ca2 .

When all the eigenvalues are negative the flat film solution is
stable. If one of eigenvalues is positive, the flat film solution
becomes unstable. The matrixL has a pair of imaginary
eigenvaluessHopf bifurcationd and a negative eigenvalue
when the value of celerity is equal to

CeHopf =13 We +
243

40

We +
45

8
2 .

For 3,Ce,CeHopf, the flat film is stable, while for Ce
,CeHopf, periodic wave forms emerge from the flat film so-
lution.

Near the point 1/We→0 and Ce→3 in the parameter
space, the linear part of the vector fieldL is singular and has
two zero eigenvalues and a negative eigenvalue. A Taylor
series expansion of Eq.s57d up to second order around the
flat film solution sh1,h2,h3d=s1,0,0d gives

1Ḣ1

Ḣ2

Ḣ3

2 = L1H1

H2

H3
2 + QsH1,H2,H3d + higher-order terms,

L =1
0 1 0

0 0 1

− 12 m Ca −
36

10
j +

60

32
jm − 36 Ca2

QsH1,H2,H3d = 36 CaH1
2sm − 1d − 84 CaH2

2 +
9

20
jH1H2

+
15

8
mjH1H2 − 36 CaH1H3, s60d

where H1=H=h−1,sH2,H3d=sHz,Hzzd, j=1/We andm=3
−Ce are the deviation variablesssmall parametersd. The lin-
ear and quadratic components of the vector field are given by

L and Q, respectively. For a given set of parameters
sj ,m ,Cad, when both the parametersj and m decrease to
zero the linear part of the vector fieldL has two zero eigen-
values and a negative eigenvalue. In the three dimensional
s3Dd phase spacesH1,H2,H3d we have a 2D center manifold
and a 1D stable manifold spanned by the eigenvectors corre-
sponding to the zero eigenvalues and negative eigenvalue,
respectively. Since the flow on a stable manifold rapidly con-
tracts towards the origin, the long term dynamics of the sys-
tem near the origin can be understood by studying the flow
on the center manifold where the solutions can either con-
tract or expand. We use center manifold theorem to reduce
the dynamics in the neighborhood of the origin
sH1,H2,H3,j ,md=s0,0,0,0,0d to the two dimensional cen-
ter manifold. The above reduction preserves all the qualita-
tive information of Eqs.s60d. The dynamics on the center
manifold is described by

Ḣ1 = H2,

Ḣ2 = − H1
2 +

1

18 Ca
H1H2 −

m

3
H1 + S 1

108 Ca
m −

1

10 Ca
jDH2

− S 1

648 Ca2
+

7

3
DH2

2, s61d

where Ca is assumed to be anOs1d parameter. The flow on
the center manifold is similar to that obtained by Nguyen and
Balakotaiahf7g susing a three equation modeld and shows
similar bifurcation features. For a detailed account on the
local bifurcation analysis we refer the reader to Nguyen and
Balakotaiahf7g. Here we present only the main results of the
analysis.

The two fixed pointssH1,H2d=s0,0d ands−m /3 ,0d of the
systems61d correspond to the flat film solution and substrate
film thickness near Ce→3. It could be observed by evaluat-
ing the eigenvalues of the Jacobian matrixJ fEq. s62dg that
the stability of the solutions is preserved after center mani-
fold reduction. The steady state corresponding to the flat film
solution is stablessinkd for m.0 and the substrate film
thickness is unstablessaddle noded for all m.0. The steady
states exchange their stabilities form,0. The Jacobian
matrix

J = 1 0 1

− 2H1 +
1

18 Ca
H2 −

m

3

1

18 Ca
H1 + S 1

108 Ca
m −

1

10 Ca
jD − 2S 1

648 Ca2
+

7

3
DH22 s62d
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has purely imaginary eigenvaluessHopf bifurcationd whenm
is equal to

mh =
108

10 We
. s63d

For values ofm abovemh, asymptotic solutions to Eqs.s61d
are given by steady traveling periodic wave forms. The am-
plitude of these periodic wave forms depends on the value of
m. The Hopf bifurcation is found to be supercritical. An im-
portant global bifurcation that can be studied near the double
zero singularity is the homoclinic bifurcation which corre-
sponds to a solitary wave. In a homoclinic bifurcation trajec-
tories leaving the steady state along the unstable manifold,
return back to the steady state along the stable manifold.
Using Melnikov’s analysis for homoclinic orbits we obtain
analytical correlationss64d ands65d for maximum wave am-
plitude and celerity of the solitary waves, respectively:

hmax− 1 =
s3 − Ced

6
=

63

25 We
=

2.52

We
, s64d

s3 − Ced =
378

25 We
=

15.12

We
. s65d

It should be noticed that the above correlations depend on
the Weber number but not on the Reynolds number. Due to
additional assumptions made near double zero singularity,
the above relations are valid only in a narrow parameter re-
gion where 1/We→0 and Ca,Os1d. However, the full
model fEqs. s57dg has a much larger region of validity and
could be used to study numerically the wave structure and
maximum wave amplitudes.

Validity of Eq. (43)

The first and second order long-wavelength equations
show finite time blowupf15,16,20,21g. Pumir et al. f16g
showed that such a behavior can be related to the homoclinic
celerity vs Reynolds number diagram, which in case of long-
wavelength equation shows saddle-node bifurcation. The
curve turns back at Re<3.97 sKa=252d. It was argued that
such a turn back signals finite time blowup.

Owing to the nature of its eigenvalues, Eq.s43d shows the
following bifurcation picture for both the highersCeù3d and
lower celeritysCeø3d branches. For a fixed Ka and Re, as
one varies the celerity from 3 to a higher/lower value, the
stable state undergoes Hopf bifurcation. On further varying
the celerity we reach the homoclinic point. The CeHopf and
Cehom trends are the same, i.e., if the Cehom vs Re diagram
shows a turn back, so does the CeHopf vs Re diagram. Thus,
instead of calculating Cehom, we would do well to just find
how CeHopf changes with changes in flow rate both for the
higher and lower branches.

Equations43d gives the following expressions for CeHopf:

We =
9s25 CeHopf h0

6 − 27 h0
8d

40s3 – 3 CeHopf + 2 CeHopf h0d
, s66d

where

h0 = Hhss1 if Ce ø 3,

hss2 if Ce ù 3.
s67d

The hss2 solution is termed the higher branch andhss1 as
the lower branch. Notice that CeHopf depends only on the
Weber number. The first plot in Fig. 8 shows CeHopf vs We
diagram for the higher branch. The curve turns back and
increases to a large value before it plateaus at a constant
value. The second plot in Fig. 8 shows CeHopf vs We plots
predicted by Eqs.s43d ands47d. The diagram shows that for
Eq. s43d, CeHopf turns back while Ooshida’s CeHopf does not,
signalling that Eq.s43d is not free from finite time blowup.
While Ooshida’s equation quells the finite time blowup as-
sociated with the long-wavelength equation, our single evo-
lution equation does not discard itself of this shortcoming.

Regularization

One would then be prompted to regularize Eq.s43d.
Ooshida regularized Gjevik’s second order long-wavelength
equation. As pointed earlier, time space exchange leads to the
long-wavelength equations. In what follows we would selec-
tively regularize Eq.s43d, and it would be shown that the
regularized equation has acceptable properties.

FIG. 8. Top: The Hopf celerity CeHopf as a function of the Weber
number We, given by Eq.s43d. Only plot for the branch with ce-
lerity greater than 3 is shown. Bottom: The Hopf celerity CeHopf vs
Weber number We curves. Solid curve corresponds to Eq.s43d and
the dashed curve is that given by Ooshida’s equation. Both branches
with celerities greater than and less than 3 are shown.
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In Sec. IV, we have assumed thatt=a t, which assumes
thatt is small. In order that the regularized equation be valid
for much longer times, we would have to regularize in time
rather than in space. From Eq.s41d, flow rateq can be writ-
ten as

q = h3 − g11 5

32
b h4 ht + g10s7 h3hx

2 + 3 h4hxxd

+ g11S 1

12
b W h3 hxxx−

27

160
b h6 hxD = q̄ + q̃, s68d

whereq̄ and q̃ are defined by

q̄ = h3 − g11 5

32
b h4 ht = q̄0 + g11q̄11 s69d

and

q̃ = g10s7 h3hx
2 + 3 h4hxxd + g11S 1

12
b W h3 hxxx

−
27

160
b h6 hxD . s70d

We would want to regularizeq̄ only. Let

L̄ = 1 +g11e1b]t s71d

be the operator, then define

S̄= L̄q̄ = q̄0 + g11sq̄11 + e1b]tq̄0d = S̄0 + S̄11. s72d

Following Ooshida, settingS̄11 to zero would yield a value
for e1 which can be function ofh, thus

e1bs3h2htd −
5

32
bh4ht = 0 s73d

or

e1 =
5

96
h2 s74d

and L̄ becomesL̄=1+g11 5
96h2b]t. The regularized equation

is obtained by operatingL̄ on q= q̄+ q̃ or

L̄q = L̄q̄ + L̄q̃ = S̄+ L̄q̃ = S̄0 + L̄q̃ s75d

and we get

q + g11 5

96
h2b]tq = h3 + g10s7h3hx

2 + 3h4hxxd

+ g11S 1

12
bWh3hxxxD − g11S 27

160
bh6hxD .

s76d

To close the above equation we require the kinematic
boundary conditionht+qx=0. The overall equation would
then be

q +
5

96
h2 Re]tq = h3 + 7h3hx

2 + 3h4hxx +
1

12
Re Weh3hxxx

−
27

160
Reh6hx. s77d

Our regularized equation is accurate up toOsg11d and is
an equation in flow rateq and surface heighth. It appears
that one needs at least two modessh andqd to satisfactorily
predict qualitative thin film dynamics as pointed by Ruyer-
Quil and Mannevillef21g.

Temporal linear stability analysis of our regularized equa-
tion gives the following expressions for the neutral wave
number and neutral celerities:

Cec = 3s1 − ac
2d, s78d

ac =
Î45 + 4 We −Î729 + 360 We + 16 We2

3Î5
. s79d

The critical Reynolds number in case of inclined films is
predicted to be Rec= 10

3 cotsud. Among the earlier two mode
models, only those developed by Ruyer-quil and Manneville
f21g predict the right critical Reynolds number which is
given above. Our regularized equation has the minimum
number of terms neccessary to describe qualitatively accu-
rate dynamics of thin film flows. The equation includes vis-
cous dissipation, surface tension, and inertial terms, all of
which are required for accurate predictions.

The CeHopf predictions of Eq.s77d shown in Fig. 9 are
given by the expression

We =
3 h0

4s25 CeHopf
2 − 81 h0

4d
40s3 – 3 CeHopf + 2 CeHopf h0d

, s80d

whereh0 is given by Eq.s67d . Also shown in the figure are
Ooshidaf15g ’s predictions and CeHopf predictions of Ruyer-
Quil and Manneville’s simplified second order Galerkin

FIG. 9. The Hopf celerity CeHopf vs Weber number We curves.
Solid curve corresponds to our regularized Eq.s77d , the dashed
curve is that given by Ooshida’s equation and the dot-dashed curve
is that given by Ruyer-Quil and Manneville’s second order Galerkin
model. Both branches with celerities greater than and less than 3 are
shown.
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model. Our regularized equation is free of finite time
blowup. Linear stability and Hopf analysis indicate that our
regularized equation over stabilizes the system, the Hopf ce-
lerity predictions are off by a factor of 1.3 as compared to
those predicted Ruyer-Quil and Mannevillef21g, while
Ooshida’s predictions are off by a factor of 2. Shakadov’s
model given by Eq.s3d does not show Hopf bifurcation,
however, it predicts homoclinic celerities as high as 7.67ssee
Table 8.1 and Fig. 3.5 of Chang and Demekhinf5gd.

Equations61d obtained by center manifold reduction re-
mains the same for the higher and lower branch, for the
alternative equation and its regularized version. Equations
s64d and s65d now read, H1max=2.52/We and ±sCe−3d
=15.12/We,H1 being the deviation from steady statesthe
higher branch is approximated byhss2=1+m /3−m2/27,
wherem=Ce−3d. Figure 10 shows a homoclinic wave pro-
file and its phase portrait predicted by the new regularized
equation. Various other homoclinic profiles are shown in Fig.
11, for different Ka and Re. Notice that Cehom is an extract of
global bifurcation and depends on the Kapitza and Reynolds
numbersssee Figs. 10 and 11d unlike CeHopf which only de-
pends on the Weber number. However, Cehom is never less
sgreaterd than CeHopf for the higher slowerd branch. The
higher branch homoclinic celerity predictions of Eq.s77d for
Ka=1 are shown in Fig. 12, also shown in the figure are the
corresponding homoclinic celerities of single hump solitary

waves predicted by Ruyer-Quil and Manneville’s second or-
der Galerkin model. Lines through the data points are cubic
spline fits of the respective data.

VIII. NUMERICAL RESULTS ON WAVE AMPLITUDES
AND COMPARISON WITH EXPERIMENTAL

DATA

In this section numerical simulation results of our evolu-
tion equations43d in the traveling wave coordinate are pre-
sented. The results are compared to those of Eq.s44d . The
predictions of the two equations are found to be significantly
different. The system given by Eq.s57d has three indepen-
dent parameters Re,Ka, and Ce. The equations are integrated
for fixed values of Re and Ka, varying the value of celerity
sCed. A slight perturbation of the flat film solution is used as
the initial condition. Celerity values are explored in the range
Cehom,Ce,3, where Cehom is the value of celerity at ho-
moclinic point. Beyond Cehom the system does not have a
solution, i.e., there are no wave forms traveling with constant
shape at celerities lower than Cehom. For given values of Re
and Ka, the flat film solution is found to be stable in the
celerity range CeHopf,Ce,3, where CeHopf is the celerity at
Hopf bifurcation. When the value of celerity is reduced be-
low CeHopf, periodic wave forms were observed. The ampli-
tude and time period of these waves were found to increase
for values of celerity away from CeHopf. Upon decreasing the
celerity furthersCehom,Ce,CeHopfd, the evolution of wave

FIG. 10. Homoclinic wave profile and its phase portrait in the
steady traveling coordinate predicted by Eq.s77d. Cehom

=6.878 286,Re=4.0,Ka=6.0,We=8.6535,CeHopf=5.9356.

FIG. 11. Homoclinic wave profiles in the steady traveling co-
ordinate-predicted by Eq.s77d. Top: Cehom=6.667 53,Re=7.0,Ka
=10.0,We=5.6751. Bottom: Cehom=7.447 965,Re=1.3651,Ka
=1.0,We=8.6535.
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structure from periodic to more complex wave profilesspe-
riod 2, period4, . . ., chaotic, and homoclinicd is found to
depend greatly on the Kapitza number. In the remaining part
of this section we discuss the transition of wave structure
from periodic to homoclinic orbit for different values of the
Kapitza number, and compare the maximum wave ampli-
tudes obtained with experimental data.

Numerical simulations show that the wave structure is
more regularsperiodic or quasiperiodicd at low Kapitza num-
bers where viscous effects are predominant over inertial ef-
fects. The route from periodic to homoclinic orbit consists

only of period-1 solutions for small Kapitza numbers. As the
value of celerity is reduced from CeHopf to Cehom, the ampli-
tude and time period of the waves increases. The time period
of the waves near the homoclinic orbit is much higher than
the time period of the periodic solutionssat the homoclinic
point, the time period is infinity and we obtain a solitary
waved. Complex wave structureschaotic solutionsd is not ob-
served in this case even up to Weber numbers of the order
unity or Re,Ka3/5. Figure 13 shows bifurcation diagrams of
film thickness versus Ce for Ka=1.0 and Reynolds numbers
Re=0.5 and Re=1.0, computed using Eq.s57d. Periodic

FIG. 12. Plot of homoclinic and Hopf celeri-
ties for Ka=1. The solid line and squares are
Hopf and homoclinic celerities given by Eq.s77d.
The dot-dashed line and triangles are Hopf and
homoclinic celerities predicted by Ruyer-Quil
and Manneville’s second order Galerkin model.
Lines running through the data points are cubic
spline fits of respective data.

FIG. 13. Top: Bifurcation diagram of film
thickness versus celerity for Ka=1 and Re=1.
Bottom: Bifurcation diagram of film thickness
versus celerity for Ka=1 and Re=0.5.
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wave forms originate from the flat film steady state for val-
ues of celerity less than CeHopf. The amplitude of these
waves increases until it touches the substrate film thickness
at Cehom. Period doubling is not observed for both Re=0.5
and Re=1.0. Same is the case for Ka=5.9 and Re=2.0sFig.
14d. Also shown in Fig. 14 is the bifurcation diagram pre-
dicted by our regularized equations77d. Only steady periodic
wave forms are observed. For intermediate values of Kapitza
number the transition from periodic to homoclinic orbit con-
sists of period-2 and period-4 solutions up to Reynolds num-
ber of the order Ka3/5. Figure 15 shows the bifurcation dia-
gram of h vs Ce for Ka=10.0. Period doubling is observed
for Ka=10.0 and Reynolds numbers 2.0 and 5.0. Whereassin
Fig. 16d for a Reynolds number of 2.1 and Ka=13.0 period-2
and period-4 solutions are observed. For higher values of the
Kapitza number, it is found that the transition consists of
period-2, period-4, and chaotic solutions before reaching the
homoclinic orbit. This is shown in Fig. 16 for Ka=22.0 and
Re=5.4. The above observations suggest that thewaves are
more regular at low Kapitza numbers and the complexity of
wave structure increases with increasing Kapitza number
even at low Reynolds numbers. Hence the interface is very
dynamic and can exhibit spatiotemporal chaos at low Rey-
nolds numbers for large values of the Kapitza number. Ex-
perimental wave traces measured in our laboratoryf18g for
Ka=5.9,Re=2.0 and Ka=13,Re=2.1 are shown in Figs.
17sbd and 18sbd, respectively. It could be seen from these
wave traces that waves are more regular at low Kapitza num-
ber for the same Reynolds number. In Figs. 17 and 18, ex-
perimental wave traces are compared to numerically simu-
lated wave profiles for Ka=5.9,Re=2.0 and Ka=13,Re
=2.1.

A comparison of experimental dataf7g with numerical
simulation results for maximum wave amplitudes in the vis-
cocapillary regimesWe.1 or Re,Ka3/5d is shown in Fig.
19. The plot shows that the model results are in good agree-
ment with experimental data in the viscocapillary regime.
However, the model underpredicts the maximum wave am-
plitudes outside the viscocapillary regime and for high val-

ues of the Kapitza number. This is because the waves outside
the viscocapillary regime and for high Ka are multipeaked
schaotic wave structured. Since the wave celerity depends on

FIG. 14. Bifurcation diagram of film thickness versus celerity
for Ka=5.9 and Re=2.0. Values indicated with the arrows are those
given by the regularized equations77d.

FIG. 15. Top: Bifurcation diagram of film thickness versus ce-
lerity for Ka=10 and Re=2.0. Bottom: Bifurcation diagram of film
thickness versus celerity for Ka=10 and Re=5.0.

FIG. 16. Top: Bifurcation diagram of film thickness versus ce-
lerity for Ka=13 and Re=2.1. Bottom: Bifurcation diagram of film
thickness versus celerity for Ka=22 and Re=5.4.
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the wave amplitude, the probability of wave merging and
splitting increases when the waves are multipeaked. These
phenomenasmerging and splitting of wavesd cannot be ac-
counted for in the traveling wave coordinate system and
hence the wave amplitudes are under predicted in the travel-
ing wave coordinate for Weber numbers outside the visco-

capillary regime and for high values of the Kapitza number.
The traveling wave analysis cannot be used to explain ex-
perimental data once the wave structure becomes nonperi-
odic.

Figure 20 shows the plot of maximum wave amplitude
versus 1/We for Ka=13 computed using the new equation.

FIG. 17. Top: Numerical wave traces obtained
from Eq. s43d for Ka=5.9 and Re=2.0. Bottom:
Experimental wave traces for Ka=5.9 and Re
=2.0.

FIG. 18. Top: Numerical wave traces obtained
from Eq. s43d for Ka=13 and Re=2.1. Bottom:
Experimental wave traces for Ka=13.0 and Re
=2.1.
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The plot shows that the double zero scaling is good near
1/We→0. The wave amplitudes are found to increase rap-
idly in the viscocapillary regimesWe@1d with increasing
1/We or Reynolds number. But for Weber numbers We
,Os1d the increase in wave amplitudes becomes gradual.
For We,1 the wave amplitudes are found to decrease. Fol-
lowing this observation, we have recently conducted experi-
ments on vertically falling films in the viscous regimes53
,Ka,693d. In these experiments, the pipe diameter and
fluid physical propertiessKa numberd were fixed, the flow
ratesRed was varied, and the maximum wave amplitude was
determined as a function of Re. It was found that the wave
amplitude initially increased with flow rate, reached a maxi-
mum saround We values of order unityd and then decreased.

This behavior, observed only for some range of fluid viscosi-
ties, is in qualitative agreement with the model predictions.
These experimental results on wave suppression will be pub-
lished separately. It should be noted here that the assumption
We@1 for which the model is derived fails in the inertial
regime and hence the model predictions are quantitatively
off. However, the model shows correct qualitative features.

Equations44d, obtained by replacing the time derivative
in Eq. s43d with a spatial derivative is also integrated in the
traveling wave coordinate. Comparison of the maximum
wave amplitudes predicted by Eq.s44d to experimental data
shows that it overpredicts the wave amplitudes in the visco-
capillary regimesRe,Ka3/5d. More important, Eq.s44d pre-
dicts nonphysical wave celerities for Reynolds number of the
order Re,Ka3/5. The phenomenon of wave suppression in
the inertial regime which is captured qualitatively by Eq.
s43d is not predicted by Eq.s44d . The Osg21d and higher
order terms neglected in Eq.s44d while exchanging time de-
rivative with spatial derivative become important at Weber
numbers of order unity. Since thehxt term in Eq.s43d retains
all these neglected terms, it predicts the wave suppression
qualitatively. The inertial effects are not completely ac-
counted for in Eq.s44d when the time derivative which is
present in the inertial term is replaced with a spatial deriva-
tive that comes from viscous contribution. Based on the lin-
ear stability results and traveling wave analysis it could be
seen that Eq.s43d is a better model than Eq.s44d for describ-
ing wave evolution on viscous films. Integrating the model
fEq. s43dg, neglecting the viscous and pressure correction
term 7h3hx

2 shows that the maximum wave amplitudes are
over predicted and the solution diverges even in the visco-
capillary regime. Hence the nonlinear term 7h3hx

2 acts as a
growth arresting term and cannot be neglected.

IX. CONCLUSIONS

In this work, the scaling, Ka,Os1d anda2We,Os1d, is
presented to develop low-dimensional models for vertically
falling viscous films. Using the scaling proposed, an alterna-
tive evolution equation and its regularized version are de-
rived for describing waves on the surface of a falling film in
the viscocapillary regimesWe@1 or 0,Re!5 Ka3/5d. The
alternative equations include viscous dissipation and pres-
sure correction terms that are missing in the existing single
evolution equations. In particular, we have shown that both
3h4hxx and 7h3hx

2 terms are necessary for quantitative de-
scription of wave amplitudes in the viscocapillary regime.
The exchange between time and space derivatives which was
used in earlier models is shown to be inaccurate. Though
replacing time with a spatial derivative recasts the evolution
equation into a form conducive for analytical and numerical
analysis, it changes the predictions of the equation both
qualitatively and quantitatively. It should be emphasized that
for falling films, it is the magnitude of the Weber number that
determines the viscous and inertia dominated regimes, and
not the Reynolds number.

An important outcome of numerical studies of the new
equations is that the wave structure is not always chaotic but
becomes regular for low Kapitza numbers in the viscocapil-

FIG. 19. Comparison of experimental and numerical simulation
results on maximum wave amplitudes. The triangles denote experi-
mental data and the dots are numerical simulations from Eq.s43d.

FIG. 20. Maximum film thickness versus 1/We for Ka=13.0.
The triangles denote the numerically determined maximum film
thickness while the circlessand the lined denote the scaling near the
double zero eigenvalue obtained from local bifurcation analysis.
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lary regime. For a fixed Reynolds number, the wave structure
becomes more and more complex as the Kapitza number is
increased. The regular structure exhibited by the waves at
low Kapitza numbers could be used to understand wavy film
flow in more complex geometries. This model also predicts
qualitatively suppression of waves for values of Weber num-
ber around unity.
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APPENDIX A: EVOLUTION EQUATION FOR
3D FILM FLOWS

The 3D version of Eq.s43d can be derived and is given by

ht + 3h2hx +
]

] x
F3h4hxx + 7h3hx

2 +
3

2
h3hz

2 +
5

8
h4hzz

−
5

32
Reh4ht −

27

160
Reh6hxG +

]

] x
FRe We

12
sh3hxzz

+ h3hxxxdG +
]

] z
F11

2
h3hzhx +

19

8
h4hxz+

Re We

12
sh3hxxz

+ h3hzzzdG = 0.

This equation may be compared to the evolution equation for
three dimensional waves that was derived by Atherton and
Homsy f19g using the traditional long-wavelength scaling
fRe,Os1d anda2 We,Os1dg. To ordera, the three dimen-
sional long-wavelength equation is

ht + 3h2hx +
]

] x
F 3

10
Reh6hx +

Re We

12
sh3hxxx+ h3hxzzdG

+
]

] z
FRe We

12
sh3hzzz+ h3hzxxdG = 0.

As mentioned earlier, in this scaling the missing viscous and
pressure correction terms appear at higher orders.

APPENDIX B: SMALL-AMPLITUDE EXPANSION

A small-amplitude expansion of Eq.s43d can be derived
and leads to an equation of the form

hT + hhX + d1hXXX− d2hTX + hXX + hXXXX= 0,

where d1=3.807 We1/10/Ka3/5 and d2=1.477 Ka3/5/We11/10.
Further details and comparison with the Kuromoto-
Sivashinsky equation can be found in Panga and Balakotaiah
f11g.
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