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Long-wavelength equation for vertically falling films
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An equation is derived for describing wave evolution on the surface of a vertically falling viscous film. The
traditional long-wavelength scaling is replaced by a new scaling to reduce the two dimensional Navier-Stokes
equations to a single evolution equation for the scaled film thickhésg). The scaling suggests that the
Weber numbefWe) must be used instead of the Reynolds num(b& to distinguish between viscous and
inertia dominated regimes for vertically falling films. This equation includes viscous dissipation and pressure
correction terms that are missing in the existing single evolution equations at the same order. Comparison of
the neutral stability curves and growth rates predicted by different models to that of the Orr-Somit@8eld
equation shows that our equation matches with the OS results better than the existing single evolution equa-
tions. However, our equation is not free from finite time blowup. Selective regularization leads to a two mode
model in flow rate and film thickness. The regularized equation is free from finite time blowup and predicts two
families of solitary waves. Numerical simulations of the derived equation and its regularized version in the
traveling wave coordinate show the transition of wave structure from re@péaiodio to chaotic profiles.

Model predictions on maximum wave amplitude on the low celerity branch show good agreement with
experimental data.

DOI: 10.1103/PhysRevE.71.036310 PACS nunid)erd7.20—k, 05.45-a, 47.20.Ma, 47.20.Ky

I. INTRODUCTION 7+ 17 F Tex+ ook = 0. ()
Wave formation on vertically falling films has been inves- An alternate approach based on integral boundary layer tech-
tigated extensively in the last half century since the earlyniques is also used to derive low-dimensional models for
work of Nussel{1] and Kapitza and Kapitzg2]. Benjamin  film flow. In this approach, the long-wavelength scaling is
[3] showed that film flow down a vertical wall is unstable at combined with an assumed velocity profile and the equations
all Reynolds numberéRe). Surface waves which arise as a of motion are averaged in the direction perpendicular to the
result of this instability are observed to show a complex andlow. A well known model derived using this approach is the
rich spectrum of behaviof4,5]. It is now well established Shkadov model:
both experimentally and theoretically that these waves ex-

hibit spatiotemporal chaos at any R€. A major unsettled ah + 99 =0,
question is whether there exists a low-dimensional model at  adx
that can describe the wave amplitudes observed in the ex-
periments qualitatively and quantitatively. q 64 (q2> 12 12 2h
i -di i —+-—|—)=—h- +Weh—;, 3
One of the approaches used to derive low-dimensional st 5ax\h Re Rehzq PN 3)

models is the long-wavelength type perturbation expansion

which gives a single evolution equation for the film thick- \yhereh is the film thickness and is the local flow rate.
ness. For example, for the case of two dimensional Navier- Recent experimenta| da[g] on wave amp"tudes have
Stokes (NS) equations, we have the well known long- shown that the above Eq&l)—(3) cannot describe the ob-
wavelength equation derived by Bennéy: served wave amplitudes. The main reason for this is attrib-
uted to the omission of some viscous dissipation terms.
Though higher order long-wavelength expansions by Gjevik
oh +3hh, + 9 iRehGh + Re Wehsh =0, (1) [8land Nakayd9] include viscous dissipation terms, it was
X X XXX ’ .
at dx| 10 12 shown recentlyf 7] that they too cannot capture the film be-
havior quantitatively. Improved versions of the Shkadov

. . . ) _ model, known as the three equation modéts film thick-
whereh is the scaled film thickness, Re is the film Reynoldsness' flow rate, and wall shear stiesterived by Ruyer-Quil

number, and We is the Weber number. A weakly nonlinear, ; ;
o . and Manneville[10] and Nguyen and BalakotaidlT], can
truncation (i.e., expanding around Re=Q=h-1=0, and [10] guy ]

Keeni v i . f the | describe the wave amplitudes quantitatively and are simpler
eeping only finear and quadrat.|c tems _the long-  ihan the Navier-Stokes equations but they are not as appeal-
wavelength equation gives the widely studied Kuramoto

ashinsk iofaf i dn: ing as the single equation models.
Sivashinsky equatiofafter scalingx, t, and 7): The main objective of the current work is to derive a

low-dimensional model that can describe the wave ampli-
tudes both qualitatively and quantitatively. Our approach for
*Corresponding author. Email address: bala@uh.edu deriving the model equation is different from those in the
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au’ av ,2 Jv au’ ,
—+—|J(1-h;)+{—-—](2h,) =0
(ay/ ax/)( X ) (ay/ t?X/)( X)

at y' =h'(x',t"), (8

h(x, ——s
’ 2
r_ ’+2 (&_L‘I,_l_&_‘l},)L_‘_z (9_[.]’1_—hx’
P —Poteu ay’ ax’ 1+h),(,2 M(?X’1+h)’(,2

h/

x'x! .
+a'(1+h),(12)3/2 0 at y' =h'(x,t), (9
whereu=(u’,v’) is the velocity vectorp’ is the pressure,
\ h'(x’,t") is the height of the filnfmeasured from the wallg
is the acceleration due to gravity, is the viscosityv is the
kinematic viscosity,o is the surface tension, amgf is the
pressure in the gas phase adjacent to the film. The prime
u denotes dimensional variables. The boundary conditions are
given by Eq.(6)—(9). Equationg6) and (7) represent the no
slip boundary condition at the wall and the kinematic bound-
ary condition at the interface, respectively. The continuity of
FIG. 1. Schematic diagram of film flow down a vertical wall. tangential and normal stresses at the interface is described by
Egs.(8) and(9), respectively.
literature and is detailed here. The new evolution equatio? One of th? solutions t,o the apove set of equations Is the
also predicts qualitatively the recent experimental observallat film solution (Nusselt's solutio obtained by balancing

tions on wave suppression in viscous films at Weber number’%e viscqus and gra\(itat?onal forces. The velocity profile for
of order unity. the flat film solution is given by

A summary of this model and its predictions are given in gh? , 1\2
Panga and Balakotaiglil]. In this paper, we present the u’ :—N[z(y—> _<y_) } (10
derivation of the evolution equation along with its regular- 2v hy hy

ﬁgsef%rgg’rg';:rtzat;%nd%gigls Insu(r)rzetngarlnroeiiltlg g]r? dtrca(;/ri“r;?i\_Ne use Nusselt’s flat film solution to define an average Nus-
) 7 ' Pallselt veIocityuN:ghﬁ,ISU. Equationg4)—9) are made dimen-
son with experimental data. ) ) . ) .
sionless by choosing average veloaity and flat film thick-
ness hy as characteristic velocity and length scales,
Il. GOVERNING EQUATIONS respe_ctwely. The resulting dimensionless variables and di-
mensionless groups are shown below:

We consider the flow of a liquid film down a vertical wall
under the action of gravity. The effects of the gas phase on -
the film are assumed to be negligible. This assumption is hy
good as long as the gas phase is quiescent and its density and
viscosity are negligible compared to the liquid phase. Figure , ,

_ y/ t B tl
hy’ (hy/uy)’

1 shows a schematic of the two dimensional flow. The coor- u= u_, v=—. p= P ,
dinate axes are chosen such thatxleis points in the flow Un Un (M_UN>
direction and they axis in the direction perpendicular to the 4hy
flow. The basic equations and boundary conditions describ-
ing the flow are given by the two dimensional Navier-Stokes Aunh 4gh3 ool/3
equations(4)—(9): :% = ?ZN Ka:gl+,u4’3'
D_u’ =- 1 Vp' +g+ vV, (4) The system haswo independent dimensionless groutige
Dt p Reynolds numbe(Re) and the Kapitza numbegiKa). Since
the Kapitza number is only dependent on the fluid physical
V.u=0, (5 properties, it is constant for a given fluid. We also use the
Weber numbefWe) which is related to Re and Ka as fol-
u=v=0 at y' =0, (6) lows:
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o 9o u? 13,53 Ka Ka sipation and pressure correction term$’g, and hhZ,
We = 2 o2o?e =374 _Re5/3:C_Re5/37 (1) which are missing in the LW equatiofi9). We find that
PUNTN - P7GN these terms are essential to capture the qualitative behavior

whereC=3'3453 The dimensionless equations are given byof wave evolution and hence are required for describing
waves on viscous films quantitatively. In addition, replacing

<%>3/5%:—%+1Z+4V2u (12) the time derivative by the spatial derivative in the term
We Dt ax ' -5/32Ré*h;, as done in the LW equatiqid9), leads to non-

physical wave celerities and poor quantitative agreement

Cka\¥Dv  ap with experimental data. The difference between our scaling

<We) bt =—a—y+4V2u, (13)  and the traditional long-wavelength scaling is discussed in

the remaining part of this section.

Long-wavelength scaling parametef=27hy/\) is intro-
duced into the systerfl2)—(18) by scaling the length in the
flow direction with \/27 where A is an unknown wave-
length. The wave number is assumed to be small. The NS
u=v=0 at y=0, (15) equations are then reduped toa single evqlution equation by

an asymptotic expansion imx along with the long-
h o oh wavelength scaling Re O(1) and &> We~ O(1). The valid-
v=—+u— at y=h(xt), (16) ity of the assumptiong being small, depends on the magni-
Jatd tude of the parameters Re and W5]. For large Weber
numbers, this is a reasonable assumption because the waves
du Jdv 9 dv du on the surface of a falling film are observed to have long
(1-ho+ (2h)=0 at y=h(xt),  \wayelengths compared to the thickness of the film for We
>1 [18]. Assuminge is small, the long-wavelength expan-
(17 sjon when truncated aO(a) gives the long-wavelength
equation(19). At the lowest order in the expansion, viscous

au, v_

=0, 14
ax  dy 9

+ 8< au 5_“) hy ,goul- h; and gravitational forces balance each other and corrections to
dy dx/1+h? “9x1+h? the lowest order solution come from the inertial and capillary
h terms. Notice that, in this procedure, irrespective of the mag-
+(C Ka)3/5\/\/92/5—x>; =0 at y=h(xt). nitude of the viscous and inertial forces in the film, the cor-
(1+ hx)3/2 rection to the lowest order solution always comes from iner-

(18)  tial terms. Viscous terms, which play an important role in
governing the dynamics of the small amplitude waves and
thin films are missing in the correction to the lowest order
solution in the long-wavelength expansion. Because of these

The two-dimensional Navier-stokegNS) equations missing terms, the long-wavelength equation does not pre-

(12<18) are traditionally reduced to a single evolution dict wave dispersion and overpredicts the critical wave num-

equation using a perturbation expansion in terms of the waveers as compared to those predicted by the Orr-Sommerfeld

numbera, along with the assumptions ReO(1) ande? We  equations obtained by linearizing NS equations. To include
~0(1). For example, the equation for the case of large Weithe viscous terms, long-wavelength expansion is carried to
ber numberg? We~ O(1), truncated aO(«) gives the long-  higher order$8,9]. These higher order approximations bring

Ill. SCALING

wavelength equatiofLW) in the viscous terms but they contain more inertial terms
sh 503 Re We (such as Ré Ré, etc) than the dissipative terms and there-
— +3h*h, + —| —Reh®h, + h3h | = 0. fore the imbalance between inertial and viscous effects
Jt dx| 10 12 present at lower orders persists at higher orders. Hence car-
(19) rying the expansion to a higher order f4[ilg| to rectify the
problem.

We derive a single evolution equation using a long-  |nitively, the terms that correct the lowest order solution

wavelength expansiof<1), for the case of large Weber gepend on the relative importance of viscous, inertial, and
numbera” We~O(1). However,unlike the long-wavelength capillary forces in the film. Traditionally, the Reynolds num-

scaling, we assumka~O(1) and do not impose any direct per is used to differentiate between viscous and inertia domi-
restriction on the Reynolds numbérhe resulting equation nated regimese.g., flow in a pipg For falling films, the

truncated aD(a??) is given by velocity and film thickness used in the definition of Reynolds
Jh J 5 27 number are not independent of each other and hence, the
— +3h’h + —[3h4hxx+ 7h®h? - —Reh*h, - ——Reh’h, Reynolds numbe(Re) alone is not sufficient to distinguish
at dX 32 160 between inertia and viscous dominated regimes. This leads to
Re We the question whether there is a parameter whose magnitude
+ 12 h®hyx [ =0 (20) is indicative of the relative importance of the inertial terms

compared to viscous and/or capillary terms. If such a param-
An interesting feature of Eq20) is that it has viscous dis- eter exists, then its magnitude would allow us to determine
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the terms that correct the lowest order solution. Here, we
argue that the Weber number plays such a role. Irrespective
of the Kapitza number or the fluid, a large Weber number
(1/We—0) implies that viscous or capillary effects are
dominant in the film compared to the inertial effects and a
small Weber numbefWe— 0) represents strong inertial ef-
fects. For example, let us consider two fluids one being water
and the other a 95% gylcerin solution. The Kapitza numbers
for these fluids are 3371 and 0.24, respectively. For Reynolds
number of unity(Re=1) the Weber numbers for these fluids
are 48 980 and 3.48, respectively. The thickness of the water
film for Re=1 is 0.0425 mm while for glycerin solution it is
4.25 mm. When compared to the water film at the same Rey- FIG. 2. Neutral stability curves obtained from Orr-Sommerfeld
nolds number, the glycerin film has a thickness which isequations for different fluids.
hundred times larger than that of water. While viscous forces ) o . ) )
are dominant in the thin water film for Re=1, inertial forces for Re=1, water is well within the viscocapillary regime,
may also become important in the glycerin film which is yvher_eas glycerin falls on the boundary where viscous and
thick at the same Reynolds numk@&e=1. The above com- nertial effects are of equal importance.
parison shows that for the same Reynolds number, eitherZThe advantages of using the scaling K&(1) and
viscous or both viscous and inertial forces can become im@” We~O(1) instead of the long-wavelength scaling Re
portant depending on the Kapitza number. Hence the magni= ©(1) and a® We~O(1) can be seen from linear stability
tude of the Reynolds number is not indicative of viscous or€sults of the NS equations. Figure 2 shows the neutral sta-
inertia dominated regimes, whereas for the water film wherdility curves obtained from the Orr-Sommerfeld equations
viscous effects are dominant, the Weber number is large an@r different fluids or Kapitza numbers. In this figure, the
for the glycerin film where viscous and inertial effects may neutrally stable wave number is plotted against Re for differ-
be of equal order, the Weber number is of order unity. Unlikeent Ka numbers. However, when the same neutral curves are
the Reynolds number, a large Weber number implies viscoulotted with the reciprocal of Weber numbgfig. 3), it is
dominated regime and a Sma" Weber number represents tﬁ@teresting to notice that a” the curves Collapse onto a Single
inertia dominated regime for falling films. Thus the correc-curve for large Weber numbed/We— 0) and tend to re-
tion to the lowest order solution depends on the Weber nummain close up to Weber numbers of order unity. In these
ber, not on the Reynolds number. plots the Kapitza number is varied between 1 and 3371. Even
We replace the assumption of R€@(1) by Ka~O(1) in for large variation in the Kapitza number, in the limit
the long-wavelength scaling and retain the large Weber numl/We—0, the results are independent of Ka number as
ber assumptiomz We~ O(l)’ to derive a Sing|e evolution stated earlier, an'd Weakly dependent on Ka fOf Weber num-
equation. Rearranging the relation between We, Ka, and RrRers of order unity, whereas the neutral stability curves re-

[Eq. (11)] and using the scaling KaO(1) and «> We=w  main distinct when plotted with Reynolds number even in
~0(1) we get the limit Re— 0. Another observation to be made from Fig. 3

is that the critical wavelength. remains small as long as the
~ a5l 1 V¥ (CKa\¥ o . Weber number is large irrespective of the Kapitza number.
Re=(C Ka wel “\Tw ) @B (21 Thus the long-wavelength assumptiore 1 is valid for large
Weber numberg? We~ O(1).
where B=(C Ka/W)3* is an O(1) parameter. The scaling |n the next section, we discuss the perturbation expansion
Re=Ba®" suggests that viscous effects should be given morgith the new scaling Ke O(1) and > We~ O(1). The ex-
importance than inertial effects while deriving evolution pansion, unlike the traditional long-wavelength expansion,

equations for large Weber numbef#/e>1). Viscous and  corrects the lowest order solution with viscous and pressure
inertial effects are of equal order when W&(1). Inertial

effects are dominant in the film for We1. The large Weber ! T T '
number limit(We> 1) where viscous or capillary effects are

o8|
strong is referred to as theiscocapillary regime [12]. In

terms of the Reynolds number, the viscocapillary regime cor- os}
responds to & Re<4"3YKa¥5(=5 Ka®%). The range of a

Reynolds numbers which define the viscocapillary regime 04|
depends on the Kapitza number. For Reynolds numbers out-
side this range, inertial effects become important. Thus for
small Ka numbers inertial effects can become important at

0 L

low Reynolds numbers. Taking We=1 as the cutoff point, the 0 01 02 03 3‘; 05 06 07 08
viscocapillary regime for watefKa=3371 corresponds to
0<Re<650, while for 95% glycerin solutiofKa=0.24 it FIG. 3. Neutral stability curves in Fig. 2 are plotted with the

is defined by B<Re<2.0. In the example discussed before reciprocal of Weber number.
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terms in the viscocapillary regime. A major improvement in dU,
our model derived using this scaling is that it restores a bal- Y =0, Poly=n=0, Ugly=0= Voly=0=0.
ance between inertial and viscous effects at the lowest order. v=h 33
IV. PERTURBATION EXPANSION . . . .
The solution to this set of equations is
We introduce the scaling KaO(1) and a® We=W ) )
~0(1) into the dimensionless equatiofl2)—18). The new Uy=-— 3Y +3hY, V,=- M P,=0. (34
dimensionless coordinatéX, Y, 7) and variablegU, V, P) 2 2
expressed in terms of the old dimensionless coordinates a“ldne evolution equatiofB5) at this order is obtained by sub-
variables are shown below: stituting the velocities in the kinematic boundary condition.
X=ax, Y=y, 7=, This equation is the same as obtained by simple long-
wavelength scaling at the lowest order:
u=U, v=aV, =P.
_ _ P _ _ _ oh, 3h%hy = 0. (35
Since the resulting system of equations after introducing the ar

scaling contains fractional powers @f a new parametey is
used in place ofx to eliminate the fractional powers. The
relationship between the parameterand «, and the scaling
in terms ofy is shown in Eqs(22)—(24):

The above equation describes the evolution of waves with
infinitely long wavelengths. When the wavelength becomes
finite, the expansion should be carried to higher orders.
Equationg36) and(37) show the corrections to velocity and

y=a', (22)  pressure aD(y°) andO(+P), respectively.
Us=V:=0, Pg=-12hY - 12hhy, 36
a=vy, yWe=W~O0(1), (23) T ° X ke (36)
Ug=Ve=0, Pg=-LWhx. (37)

CKa\¥ (CKa\¥ ..
we, “\Tw ) @AY (24)  Only pressure is corrected at these orders. Since there is no
correction to the velocities, the evolution equation remains
where 8=(CKa/W)*5~0(1). The scaled equations are the same as Eq35). However, it should be observed that

given by pressure gets corrected first, unlike the long-wavelength ex-
1 _ 0 pansion where pressure correction is pushed to higher orders.
BY (U, + UUx+ VUy) = = 9Py + 12+ AUy v+ ¥ s, The equations aD(y'9 are given by
(25
PUso_19Ps _ U,
BY(V,+ UV +VVy) = = Py + 4(yVyy+ 1Ny, IY: 49X oxX*
(26) Py .
Ux+Vy =0, (27) A
U=Vv=0, for Y=0, (28) 910 V1o _ g
axX Y '
V=h,+Uhy for Y=h(X7), (29)

Uidv=0= Vidv=0=0, Pigly=n=0,
(Uy + 7' V) (1 = %) + (Vy = Up) (2*%y) = 0
for Y=h(X,7), (30) (

Ju aV, dV, dU
_10+_0)+<—°— °>(2hx):0 at Y=h(X,7).

ayY axX aY X
P+8y(Uy+ ¥ Ny ) ——5 + 8y’ Uy
FUv+y ><)1 + 92 4 X1+ 4102 Notice that at this order the corrections to the velocity come
h from the viscous and pressure terms, whereas the correction
+,3Wy6¢23/2 =0 for Y=h(X,7). (31) to the lowest order comes from the inertial terms in the tra-
(1+5"5) ditional long-wavelength expansion. Equatici@$) include

Due to the way the perturbation paramejeappears in the visceus terms in both thJemomentum equation_ and the Fan—
scaled equations, corrections to the lowest oi@&s?) are gential stress boundary condition. The evolution equation at

only made a(y%), O(y%), O(y19), O(y13), O(y1%), O(y1§), ~ O»") is given by Eq.(39):

and so on. The lowest ord€r equations are given b ah J
R Jven oy 22 4 3P+ YO[Bt TR =0, (39)
PU, IP, aU, dV, a1 IxX
12+4——=0, - =0, +—=0, (32 ) . 1 .
Y’ aY axX aY The governing equations &(y'') are given by
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aY? 4

2
3 Ull—'g<aU°+UOﬁU°+V

dUo) 10Pg Since;Reh*h; is anO(yM) term, the time derivative term is
[0} T
aT axX ayY

49X’ replaced by its zeroth order approximation,

h,=-3h%h +0O }
Py X «+O(y'9)

Y 0, The terms ofO(y?!) are neglected. The evolution equation
obtained after exchanging the time derivative with a spatial

derivative is given b
Uy 9V _ g y

O:
axX aY

d 3
h, + 3h*h, + (9—)({3h4hxx +7h%h2 + 0 Reh®h,

Uidv=0= Vidy=0=0, P1ily=4=0,

Re We
T h3hxxx] =0 (44
y=n=0. (40) . . o . .
Y A similar exchange of time derivative with the spatial deriva-

tive in the expansion using traditional long-wavelength scal-
ing gives LW equation(19). While this approximation is
tgood fory—0 or 1/We—0, we observe that for large but
finite Weber numbers the predictions of E44) are both
qualitatively and quantitatively different from those of Eq.
5 ., (43). Comparing the maximum wave amplitudes obtained
- 3—2B h, from the two equation$43) and (44) to experimental data
shows that Eq(43) describes the wave evolution on viscous
7 6 1 _ films more accurately and retains the qualitative features of
160 hhy + 1—2[3Wh3hxxx] =0. 4D the Navier-Stokes equations up to Weber numbers of order
unity. Benjaminet al. [13] made similar observations with
In terms of the wave number, the Korteweg-de Vrie¢KdV) equation. When the spatial de-
ah P P rivative in the KdV equation was replaced by time deriva-
[Z— + 3h2hx] + azﬁ[3h4hxx+ 7h®h2] + az-zﬁ tive, the equation was found to have better properties.

From the governing equations @(y'%), it can be seen that
inertial and surface tension terntm the form of pressure
correction affect the solution and the evolution equation a
this order is given by

dh d J
— + 3h%hy + Y10—[3h*hyy + 73] + y11—
ar X ')’1 J X[ XX X] 'yl J X

5 27 1
% [_ 3—2Bh4h7— E h6hx+ Eﬂwrﬁhxxx] =0, V. COMPARISON OF EVOLUTION EQUATIONS
In this section, we compare our equati@8) with some
(42) of the existing evolution equations. When compared to the

where we have grouped terms of the same order. If the pefong-wavelength equation,
turbation expansion is carried in terms®@instead ofy, the
: ; s h a3

correction to the evolution equation is made at ordets — +3h?h + a—| —Reh®h, +
a8 af, o5, o??/5, and so on. We truncate the perturbation dt 0
expansion aO(a*'%) or O(y'Y since it has all three viscous, . . .
expa (@) (") : : o . jt can be seen that in our scaling there are no terms of order
inertial, and pressure corrections included in it. Removing
the scaling from Eq(42) , the evolution equation can be

written in the old dimensionless variables as ; .
the long-wavelength scaling, the viscous and pressure correc-
dh ) 9 4 22 D 4 27 6 tion terms are missingat order «) while the inertial _and
g TOhet o | Sh T - SRenhy = 2 o ReVhy surface tension terms appear at ordeMoreover, the mixed
derivative in space and time is replaced with the spatial de-
rivative in the long-wavelength equation.
Frenkel and Indireshkumafl4]| derived an evolution
. . _ equation based on minimal requirement of derivability
Evolution equation at the next order can be obtained by truna\rD) principle. Their equation obtained by combining the

cating the equation @D(a”?"). In case of inclined films, an  |ong-wavelength expansion with amplitude expansion is
additional term, 9/ dx(cotéh®h,) appears in the left-hand given by

side of Eq.(43), whered is the angle of inclination with the

horizontal. 3 Re We
7+ 3+ 6n7 + ERe"]xx"' Tnxxxx"' 37ux=0.

Re We
o h3h| =0,

« and the viscous dissipation terms appear at ordexhile
the inertial and surface tension terms appear at adérin

Re We

+ e h3hxxx}:0. (43)

Exchange of time and spatial derivative (45)

Equation(43) can be further simplified by replacing the Comparing Eq(45) to our equation in the weakly nonlinear
time derivative in the tern;Ren’h, with a spatial derivative. ~form,
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7L L L T T that the regularization procedure overstabilizes the system.
. The reason for this overstabilization may be because of re-
placing the spatial derivative in the viscous and pressure cor-
rection terms with the time derivative. In the limit of We
— o0, both the equations are similar, because the time deriva-
tive can be replaced by a spatial derivative and vice versa.
However, for large but finite Weber numbers, use of time
derivative instead of spatial derivative in the viscous and
pressure correction terms introduces a stabilizing effect
which is not present in the physical system. This will be
shown using linear stability analysis in the next section.

Equation (44)

Ce
r

VI. LINEAR STABILITY ANALYSIS

We verify the consistency and accuracy of our model by

i comparing the linear stability results of our E¢3) to that

02 04 06 08 1 of Orr-Sommerfeld OS) equation obtained by linearizing the
a Navier-Stokes equations around the flat film solution. Equa-

FIG. 4. Wave celerityCe) vs a for Ka=10.0 and Re=5.0. ::82 514_3)1v;irlleer;hnear|zed around the Nusselts flat film solu-

0.1

5 27
7+ 31+ 697+ 370 3_2Re77xt - 1_60Re77xx 5 2 Re We
Re We 7+ 37+ 30— 3_2Re77tx - 1_60Re77xx T Moo= 0,
T Moo= 0, (46) (49

it can be seen that the time derivative is exchanged with a . _ , .
spatial derivative in Eq(45). The weakly nonlinear form of where 7(x,0) is the de\(latlon from .the f!at film th|ckn§ss,
the evolution equations are only valid in the region wherel;t)=1+7(x,t). We introduce sinusoidal perturbations
wave amplitudes are very small. Since the parameter regiotiemporal formulationof the form

where wave amplitudes remain small is very narrow, the

above equations are limited to a narrow region.

Ooshida[15] developed a regularized long-wavelength
equation using Padé type approximation to increase the con- . . . . .
vergence boundaries of the long-wavelength equation. Thi'O the_ linearized equatio9). Here § IS th_e wave am_pll-
regularized long-wavelength equation derived by Ooshida i&/d€:« is the wave number and Ce=GeCs is the celerity.

7= delatCe) (50)

he real part of celerity Gagives the speed of the waves and

iven b
’ ’ P P 5 97 imaginary part Cegives the growth rate of the waves. The
h. — —(h29.9:h) + — | h3 = —Reh?h, - —Ren®h waves are ur}sta}ble if the g_rowth rate; @posmve anq vice
AL ax{ 14 ¢35 X versa. Substituting Eq50) into Eq. (49) yields the disper-
ReWe sion relation
"2 h"'hxxx] =0 (47)
When compared to our equation, Ooshida’s equation has an ~ ~iaCe+3a-3ia’- 3—2Rea2 Ce +1—60Reoz2

extra time derivative term and does not have the viscous and

pressure correction tern8h*h,, and Hh?) present in our

equation. Interestingly, when the time derivative in the sec- + 12
ond term of Ooshida’s equation is replaced with the approxi-

mation h,=—-3h?h,, Ooshida’s equation reduces to the form i )
of our new equatiort43) with different numerical constants. The wave celerity Geand growth rate Gecould be obtained

The numerical constants are different because of the regulaby Separating the real and imaginary parts of the dispersion
ization procedure. The modified Ooshida’s equation is giverelation. The wave celerity and growth rate for different

Re We
o*=0. (51)

by single evolution equations are given below.
Equation(43):
2 J 4 312 5 4 27 6
h + 3h*h, + —| 3h*h,,+ 6h°h; — —Reh*h, — ——Reh°h,
ax 14 35
3+<ERe2—3> 2+iRe2 Wea*
 ReWe, | s 5120 “ " 384 “
12 XXX Ce= , (52
1+ 25 R&a?
o
Linear stability analysis of Ooshida’s equatiéfi7) shows 1024
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T T T T T T I T T T T T T T T
Ka=10 Equation (44)
Re=5.0
01 [~ -
- New Equation (43) -
(lcei B T
i 1 FIG. 5. Growth rate(a«Cg) vs a for Ka
L i =10.0 and Re=5.0.
001 |- -
0.1 1
o
3 15 We 5 tion (44) predicts unusually large growth rates and amplifies
10 e — 3_2"'_2 R even the shorter wavelengths. Hence the presence of short
Ce= . (53 wavelengths or noise in the system is amplified when Eqg.
1+£Re2a2 (44) is used to describe wave evolution though the short
1024 wavelengths are normally damped in the real system. Growth
Equation(44): Eztj predictions of LW equatiofil9) are the same as Eq.
Ce=3(1-02, (54) The critical wave numbefa,) for neutrally stable waves
is obtained by setting growth rate G&® in Eq. (53):
3 Re We
Cg=—Rex - ———a°. (55) [ 36 \¥
10 12 S e B (56)
Long-wavelength equatiofi9): g TWe
Cg =3, It follows from Eq. (56) that for We>1 the neutral wave
number approaches the limitpredicted by the long-
3 Re We , wavelength as well as the OS equatipns
Ce= ERea - Taf .
_ 38
Comparing the wave celerities obtained from the three equa- %=\ e

tions, it could be seen that the wave speed predicted by Egs.
(44) and(19) are independent of the parameters Re and WetHowever, for any finite value of Wey, given by Eq.(56)
which is not the case in the real experiment. While the Lwnever exceeds 0.8 while that predicted by the long-
equation(19) shows no dispersion, i.e., all the wavelengthswavelength model is unboundéds the Weber number, We
travel with equal velocity, the wave speeds predicted by Eq=< 1). Again, it is the viscous dissipation terms that arrest the
(44) can become negatiViE&q. (54)] for values ofa greater growth of short wavelengths. Figure 6 shows the neutral sta-
than 1. This would lead to nonphysical upstream propagatioRility curves of different models for Ka=10 as a function of
of waves with wave numbers greater than 1. Both these prohe reciprocal of the Weber number. The region that lies be-
lems are rectified in Eq43). low the neutral stability curve is unstable and the region
above it is stable. A comparison of the evolution equations
[LW, Nakaya, Ooshida equatid43), and its regularized ver-
sion given by Eq.77)] shows that the new equatidd3)
remains close to the OS in the viscocapillary regime. The
Figures 4 and 5 show the wave celeriti€g) and growth  Jong-wavelength and Nakaya models diverge from the OS
rates(aCe) obtained from Eqs(43) and (44), and OS as a within the viscocapillary regime. For very large Weber num-
function o for Ka=10 and Re=5. As mentioned earlier, the bers, the new equation, Ooshida’s equation and OS predict
wave celerites and growth rates predicted by @) are in  the same critical wave number. However, Ooshida’s equation
better agreement with the OS than those of @4). Equa- under predicts the critical wave number for values of 1/We

Comparison of model predictions with Orr-Sommerfeld
results
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1 T T T T T T T T T T T T T T T T T T T 3.5 | M M N T v N M T N M N 1 M ' Y 1
LongWave,/ |
3
2
5
825
(lc E
% 2 '\\_ LReguIarized New Equation ]
4 '\\_ )
- _\--~
15 [ -"---._ — T
[ New Equation - =
4 1 " | 1 1
0 0.2 04 0.6 0.8 1
0...|...|...|...|... We'l
0 0.2 04 0.6 0.8 1
we' FIG. 7. Critical celerity curves for Ka=10.
FIG. 6. Neutral stability curves for Ka=10. dh 12 Ca
d—3:— —(Ce — Cehy + h3— 1+ 3nthy + 7h3h))
away from zero. This overstabilizing effect in Ooshida’s z hi
equation is due to replacing the spatial derivatives in the 15 81 ,
viscous and pressure correction terms with time derivative ~ g weCt luha + oo i, (57)

during the regularization procedure. The viscous and pres-
sure correction terms do not have time derivatives in the
regular long-wavelength expansion. The neutral stability
curves predicted by E¢44) are the same as the LW equation where(h,,h,,hs)=(h,h,,h,,) and C&=1/Re W& is the cap-
though the celerities predicted by it are different from that ofjjlary number. The dynamics of the vector fieli7) can be
the LW equation. Figure 7 shows the critical celerity plotsstudied by integrating the ordinary differential equations nu-
predicted by our equation, its regularized version and othemerically for given values of Reynolds and Kapitza numbers,
equations. varying the value of celerityCe). Asymptotic solutions to
Egs.(57) represent wave forms traveling with constant shape
and velocity. Possible solutions include fixed points, periodic
wave forms, and trajectories connecting fixed poifiis-
Linear stability results show that the evolution equationmoclinic and heteroclinic orbijsA physical interpretation of
(43) is better than the existing single evolution equations ineach of these solutions can be found in Puetial.[16] and
the viscocapillary regime and preserves the qualitative feaChang[17]. The fixed points of the system can be obtained
tures outside this region. In this section, we present results diy setting the derivatives on the left-hand side of E§g) to
local nonlinear analysis on E¢43) in the traveling wave zero and are given by Eq8) and(59),
coordinate system. We study the waves that travel with a
constant shape and velocity, in a coordinate system moving
with the wave velocity(Ce). Though the case considered
here is an idealization of what is observed, it still gives use-
ful information on the wave structure and maximum wave
amplitudes that could be attained, especially for Kapitza
numbers of order unity(viscous film3. Introducing the

steady traveling wave coordinate chan —Cet, d/dx 1 3
Y g g hsg:_§+ \ICG—Z. (59

VII. LOCAL BIFURCATION ANALYSIS

heg =1, (58)

=dldz, 9l t=-Cedl dz, Eq. (43) can be reducedafter inte-
grating onceto a set of three ordinary differential equations
given by

dh; The first fixed point(58) is the Nusselt’s flat film solution
dz ~ and the second fixed point corresponds to the substrate film
thickness. The two steady states intersect at Ce=3 and the
system undergoes a transcritical bifurcation at this point. The
dh, h flat film solution is stable for celerity values less than 3 and
3 unstable for celerity above 3. For a given set of parameters
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(Ce,We,Ca information on the stationary solutions other
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L and Q, respectively. For a given set of parameters

than the fixed points to the vector field near the flat film(¢, «,Ca, when both the parametegsand u decrease to
solution can be obtained by evaluating the eigenvalues of theero the linear part of the vector field has two zero eigen-

linear part of the vector field,

0 1 0
0 0 1
L= 36 60(3-Co '
~123-CecCa - + 2 ~36Ca

10We 32 We

values and a negative eigenvalue. In the three dimensional
(3D) phase spacéH;,H,,H3) we have a 2D center manifold
and a 1D stable manifold spanned by the eigenvectors corre-
sponding to the zero eigenvalues and negative eigenvalue,
respectively. Since the flow on a stable manifold rapidly con-
tracts towards the origin, the long term dynamics of the sys-
tem near the origin can be understood by studying the flow

When all the eigenvalues are negative the flat film solution i$n the center manifold where the solutions can either con-
stable. If one of eigenvalues is positive, the flat film solutiontract or expand. We use center manifold theorem to reduce

becomes unstable. The matrix has a pair of imaginary
eigenvalues(Hopf bifurcation and a negative eigenvalue
when the value of celerity is equal to

243

3We+——
40

45
We +—

8
For 3<Ce<Ceyyyp the flat film is stable, while for Ce
< Ceyopn periodic wave forms emerge from the flat film so-
lution.

Near the point 1/We-0 and Ce-3 in the parameter

space, the linear part of the vector fi¢lds singular and has

CQ-mpf =

two zero eigenvalues and a negative eigenvalue. A Taylor

series expansion of E@57) up to second order around the
flat film solution (h;,h,,h;)=(1,0,0 gives

Hy

Hy
H, [=L| Hz | + Q(Hy,H,, Hy) + higher-order terms,
)\
0 1 0
0 0 1
L=

36
-12uCa — ¢+

80, _36ca
10° " 32°#

9
Q(Hy,Ha Hy) = 36 CaHi(n — 1) - 84 CaHy + _ ¢HiH,
15
+E,LL§H1H2_36 CaH1H3, (60)

where H=H=h-1,(H,,H3)=(H,,H,,), £&=1/We andu=3
- Ce are the deviation variablésmall parametejsThe lin-

the dynamics in the neighborhood of the origin
(H;,H5,H3,€,14)=(0,0,0,0,0 to the two dimensional cen-
ter manifold. The above reduction preserves all the qualita-
tive information of Eqs.(60). The dynamics on the center
manifold is described by

H, =H,,
Hp= — H2 + ——H,H, - “H +<L —i§>H
27" g ca t 2T 3 1 \108cd " 10ca’) 2
17
- +—|H3 61
(64803 3) 2 (62)

where Ca is assumed to be @4l) parameter. The flow on
the center manifold is similar to that obtained by Nguyen and
Balakotaiah[7] (using a three equation modlednd shows
similar bifurcation features. For a detailed account on the
local bifurcation analysis we refer the reader to Nguyen and
Balakotaial{ 7]. Here we present only the main results of the
analysis.

The two fixed pointgH;,H,)=(0,0) and(-u/3,0) of the
system(61) correspond to the flat film solution and substrate
film thickness near Ce> 3. It could be observed by evaluat-
ing the eigenvalues of the Jacobian mathikEq. (62)] that
the stability of the solutions is preserved after center mani-
fold reduction. The steady state corresponding to the flat film
solution is stable(sink) for ©«>0 and the substrate film
thickness is unstablesaddle nodgfor all > 0. The steady
states exchange their stabilities fer<<0. The Jacobian

ear and quadratic components of the vector field are given bgnatrix

1 1 (62

0
J= 1 s 1
_2H1+_H2__ H1+
18 Ca 3 18Ca

1
108cd’ 10 Cag) - 2(

.
+=|H
648 CA& 3) 2
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has purely imaginary eigenvaluédopf bifurcation when u 200 3 ' ! L ! ! d
is equal to 175 F ]
108 63 150 | ]
=10 we 125 © 3
For values ofu abovep,, asymptotic solutions to Eq$61) Cenopt 100 | E
are given by steady traveling periodic wave forms. The am- 75 E ]
plitude of these periodic wave forms depends on the value of co ]
w. The Hopf bifurcation is found to be supercritical. An im- ;
portant global bifurcation that can be studied near the double BE E
zero singularity is the homoclinic bifurcation which corre- == . .
sponds to a solitary wave. In a homoclinic bifurcation trajec- 0.000 0003 QO10 1"/'%:;; 000 0025 000

tories leaving the steady state along the unstable manifold,
return back to the steady state along the stable manifold. .
Using Melnikov’'s analysis for homoclinic orbits we obtain g
analytical correlation$64) and(65) for maximum wave am-

40 f
plitude and celerity of the solitary waves, respectively: ° ;
(3-Ce 63 252 e’
h -1= = =—, 64 C [
max 6 25We We (64 CHoPl 50 &
378 15.12 o
(3-Ce= = (65 3

25We~ We 20|

It should be noticed that the above correlations depend on : L L L
the Weber number but not on the Reynolds number. Due to 0.05 0.0 015 0.20
. . . . 1/We
additional assumptions made near double zero singularity,
the above relations are valid only in a narrow parameter re- g s. Top: The Hopf celerity Gg,y as a function of the Weber
gion where 1/We-0 and Ca-O(1). However, the full  nymber we, given by Eq43). Only plot for the branch with ce-
model[Egs. (57)] has a much larger region of validity and lerity greater than 3 is shown. Bottom: The Hopf celeritygvs
could be used to study numerically the wave structure an@Vveber number We curves. Solid curve corresponds to48).and
maximum wave amplitudes. the dashed curve is that given by Ooshida’s equation. Both branches
o with celerities greater than and less than 3 are shown.
Validity of Eq. (43)

The first and second order long-wavelength equations h.. if Ce< 3
show finite time blowup[15,16,20,2]. Pumir et al. [16] o= SSL_ '
showed that such a behavior can be related to the homoclinic hss2if Ce = 3.

celerity vs Reynolds number diagram, which in case of long-  The h, solution is termed the higher branch ang; as
wavelength equation shows saddle-node bifurcation. Thene |ower branch. Notice that G&r depends only on the
curve turns back at Re3.97 (Ka=252. It was argued that \weper number. The first plot in Fig. 8 shows,Gg vs We
such a turn back signals finite time blowup. diagram for the higher branch. The curve turns back and
Owing to the nature of its eigenvalues, E43) shows the increases to a large value before it plateaus at a constant
following bifurcation picture for both the highé€e=3) and  y3jue. The second plot in Fig. 8 shows,gg vs We plots
lower celerity(Ce= 3) branches. For a fixed Ka and Re, as predicted by Eqs(43) and(47). The diagram shows that for
one varies the celerity from 3 to a higher/lower value, theEq. (43), Cay turns back while Ooshida’s Gg,s does not,
stable state undergoes Hopf bifurcation. On further varyingsignalling that Eq(43) is not free from finite time blowup.
the celerity we reach the homoclinic point. Theggand  While Ooshida’s equation quells the finite time blowup as-
Ceom trends are the same, i.e., if the Ggvs Re diagram  sociated with the long-wavelength equation, our single evo-
shows a turn back, so does the Ggvs Re diagram. Thus, |ution equation does not discard itself of this shortcoming.
instead of calculating Gg,, we would do well to just find
how Cegyopr changes with changes in flow rate both for the Regularization

higher and lower branches. , _ One would then be prompted to regularize Hd3).
Equation(43) gives the following expressions for 4@¢  ogshida regularized Gjevik's second order long-wavelength

(67)

9(25 Ceyopf hS - 27 h) equation. As pointed earlier, time space exchange leads to the
We =40(3 T3 Ceu 2 Cany )’ (66)  long-wavelength equations. In what follows we would selec-
Fiopt Giopt Mo tively regularize Eq.43), and it would be shown that the
where regularized equation has acceptable properties.
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In Sec. IV, we have assumed that « t, which assumes
that 7 is small. In order that the regularized equation be valid
for much longer times, we would have to regularize in time

rather than in space. From E@1), flow rateq can be writ-
ten as

5
g=h- 7“3—2,3 h* h+ ¥'%7 h*h?+ 3 h*hy)

+ 'yll(lizﬁ W l’? hxxx_ %UB hG hX) :a+a' (68)

whereq andq are defined by

_ 5 _
a=h’- ' phth=Got v (69
and
1
G= "7 h®h+3 h'hy,) + 711( PECALLL™
27
-—pBh%h ) 7
1BOB * (79
We would want to regularizg only. Let
L=1+yMed (71)
be the operator, then define
S=LG=0 + {1+ 18400) = So+ Sus. (72)

Following Ooshida, settiné}ll to zero would yield a value
for e; which can be function of, thus

5
eB(30°hy) ~ - phh =0 (73)
or
5
=—h 74
€ 9% (74)

and L becomes. =1 +y“_§6h2,8at. The regularized equation

is obtained by operating on g=qg+q or
Lg=La+LG=S+1G=%+Lg (75)

and we get

5
q+ yllg—GhZBatq =h3+y!Y7h*h,2 + 3h*h,,)

1 2
T e R PN
(76)
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025 0.50

0.75 1.00 125 1.50 175 2.00

FIG. 9. The Hopf celerity Gg,s vs Weber number We curves.
Solid curve corresponds to our regularized Efj7) , the dashed
curve is that given by Ooshida’s equation and the dot-dashed curve
is that given by Ruyer-Quil and Manneville’s second order Galerkin
model. Both branches with celerities greater than and less than 3 are
shown.

5 1
q+ 9—6h2 Redq = h® + 7h°h2 + 3h*h,, + oRe Wen®h,

(77)

Our regularized equation is accurate upQby'?) and is
an equation in flow rate and surface heighht. It appears
that one needs at least two modbsandq) to satisfactorily
predict qualitative thin film dynamics as pointed by Ruyer-
Quil and Mannevillg21].

Temporal linear stability analysis of our regularized equa-
tion gives the following expressions for the neutral wave
number and neutral celerities:

Ce.=3(1-add), (78)

\/45 +4 We —\729 + 360 We + 16 We
A = 3 ’/g . (79)
\

The critical Reynolds number in case of inclined films is
predicted to be Re:%) cot(#). Among the earlier two mode
models, only those developed by Ruyer-quil and Manneville
[21] predict the right critical Reynolds number which is
given above. Our regularized equation has the minimum
number of terms neccessary to describe qualitatively accu-
rate dynamics of thin film flows. The equation includes vis-
cous dissipation, surface tension, and inertial terms, all of
which are required for accurate predictions.

The Ceyop predictions of Eq.(77) shown in Fig. 9 are
given by the expression

oo 3 hy(25 Céiope = 81 1)
40(3 -3 Ceiopf'l' 2 CQ-Iopf hO) ’

(80)

To close the above equation we require the kinematiavherehy is given by Eq.(67) . Also shown in the figure are
boundary conditionh;+q,=0. The overall equation would Ooshida[15] 's predictions and Gg predictions of Ruyer-

then be

Quil and Manneville’s simplified second order Galerkin

036310-12



LONG-WAVELENGTH EQUATION FOR VERTICALLY ...

PHYSICAL REVIEW E71, 036310(2009

T T LI | T T T T T I:
225 [ 2 ]
; 2f ]
2,00 [ 1
- 175 F 3
R 1B E 15 F :
150 F 125 f :
125 F 1
L | I " | - YR [ S T T W - |
[ 4550 4650 4700 4750 4800
1.00 | " " 7
Fi | PR IS S T N1 1 I 1 13
4720 4740 4760 4780 4800 4820 4840 B N L ALY B
z i 1
F LI L L LR B L L B L LI BRI BRI 2.25:— -:
01F (‘\ B 2 F ]
o.o; f his b 9
-01 F 3 15E ]
dh E b ]
dz 02 E 125 F 3
-03 ; ) S U/ W SV S—— .
L ] 4700 4720 4740 4760 4780 4800 4820 4840
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05 P T T T P FIG. 11. Homoclinic wave profiles in the steady traveling co-

ordinate-predicted by E(.77). Top: Cg,n,=6.667 53,Re=7.0,Ka
=10.0,We=5.6751. Bottom: Gg,=7.447 965,Re=1.3651,Ka

. ! . L =1.0,We=8.6535.
FIG. 10. Homoclinic wave profile and its phase portrait in the

steady traveling coordinate predicted by E@77). Ceom

=6.878 286, Re=4.0,Ka=6.0, We =8.6535,/Gp=5.9356 waves predicted by Ruyer-Quil and Manneville’s second or-

der Galerkin model. Lines through the data points are cubic

model. Our regularized equation is free of finite time spline fits of the respective data.

blowup. Linear stability and Hopf analysis indicate that our

regularized equation over stabilizes the system, the Hopf ce- \,;; NUMERICAL RESULTS ON WAVE AMPLITUDES

lerity predic_tions are off by.a factor of 1.3 as compa.red to AND COMPARISON WITH EXPERIMENTAL
those predicted Ruyer-Quil and Mannevill@1], while DATA

Ooshida’s predictions are off by a factor of 2. Shakadov’s
model given by Eq.3) does not show Hopf bifurcation,
however, it predicts homoclinic celerities as high as 1€  tion equation(43) in the traveling wave coordinate are pre-
Table 8.1 and Fig. 3.5 of Chang and Demekfsi. sented. The results are compared to those of(&4).. The
Equation(61) obtained by center manifold reduction re- predictions of the two equations are found to be significantly
mains the same for the higher and lower branch, for thalifferent. The system given by E¢57) has three indepen-
alternative equation and its regularized version. Equationgent parameters Re,Ka, and Ce. The equations are integrated
(64) and (65 now read, H;,.,=2.52/We and #Ce-3  for fixed values of Re and Ka, varying the value of celerity
=15.12/We,H; being the deviation from steady statiae  (Ce). A slight perturbation of the flat film solution is used as
higher branch is approximated blo=1+u/3-u?/27, the initial condition. Celerity values are explored in the range
where u=Ce-3. Figure 10 shows a homoclinic wave pro- Ce,,,<Ce<3, where Cg,, is the value of celerity at ho-
file and its phase portrait predicted by the new regularizeanoclinic point. Beyond Gg,,, the system does not have a
equation. Various other homoclinic profiles are shown in Fig.solution, i.e., there are no wave forms traveling with constant
11, for different Ka and Re. Notice that (g is an extract of  shape at celerities lower than (& For given values of Re
global bifurcation and depends on the Kapitza and Reynoldand Ka, the flat film solution is found to be stable in the
numbers(see Figs. 10 and J1nlike Cey,p Which only de-  celerity range Cgy,<<Ce< 3, where Cgyy is the celerity at
pends on the Weber number. However, §gis never less Hopf bifurcation. When the value of celerity is reduced be-
(greatey than Ce for the higher (lower) branch. The low Ceyqpyr, periodic wave forms were observed. The ampli-
higher branch homoclinic celerity predictions of Eg7) for ~ tude and time period of these waves were found to increase
Ka=1 are shown in Fig. 12, also shown in the figure are thdor values of celerity away from Gg,:. Upon decreasing the
corresponding homoclinic celerities of single hump solitarycelerity further(Ce,,,<Ce< Ceyqy), the evolution of wave

In this section numerical simulation results of our evolu-
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FIG. 12. Plot of homoclinic and Hopf celeri-
ties for Ka=1. The solid line and squares are
Hopf and homoclinic celerities given by E.7).
The dot-dashed line and triangles are Hopf and
homoclinic celerities predicted by Ruyer-Quil
and Manneville’s second order Galerkin model.
Lines running through the data points are cubic
spline fits of respective data.

Ce

0.0 0.2 0.4 0.6 08 1.0 12 14
1/We

structure from periodic to more complex wave profilee-  only of period-1 solutions for small Kapitza numbeis the
riod 2, period4,..., chaotic, and homoclinjcis found to  value of celerity is reduced from Ggy to Cg,m the ampli-
depend greatly on the Kapitza number. In the remaining partude and time period of the waves increases. The time period
of this section we discuss the transition of wave structureof the waves near the homoclinic orbit is much higher than
from periodic to homoclinic orbit for different values of the the time period of the periodic solutiortat the homoclinic
Kapitza number, and compare the maximum wave amplipoint, the time period is infinity and we obtain a solitary
tudes obtained with experimental data. wave. Complex wave structur@haotic solutionpis not ob-
Numerical simulations show that the wave structure isserved in this case even up to Weber numbers of the order
more regulafperiodic or quasiperiodjat low Kapitza num-  unity or Re~Ka®>. Figure 13 shows bifurcation diagrams of
bers where viscous effects are predominant over inertial efilm thickness versus Ce for Ka=1.0 and Reynolds numbers
fects. The route from periodic to homoclinic orbit consists Re=0.5 and Re=1.0, computed using E§7). Periodic

1.123 Substrate Film Thickness
w./
10 h ',/"' F.l\ﬁl Juti Ka=1
/,. at film solution Re=1

No Solution
0,‘
‘/
‘/
‘/
.f

1.0 225 246 30 Ce _ o .
Ce,. Ce, FIG. 13. Top: Bifurcation diagram of film
o opf thickness versus celerity for Ka=1 and Re=1.
Bottom: Bifurcation diagram of film thickness
versus celerity for Ka=1 and Re=0.5.
Sybstrate Film Thickness Ka=1
L V) Re=0.5
h 1P iy Y .
No Solution / "," Flat film solution

1.0 270 279 30 Ce
cehon Cehopf
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e 2,713
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1.0 251 r 2.668 3.0 Ce
257
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FIG. 14. Bifurcation diagram of film thickness versus celerity
for Ka=5.9 and Re=2.0. Values indicated with the arrows are those
given by the regularized equatidi7).

wave forms originate from the flat film steady state for val-
ues of celerity less than Ggy The amplitude of these
waves increases until it touches the substrate film thicknes:
at Cg,n, Period doubling is not observed for both Re=0.5
and Re=1.0. Same is the case for Ka=5.9 and Re f2d)

1.05
1.043

1.16
1.14

1.0 |-~
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FIG. 15. Top: Bifurcation diagram of film thickness versus ce-

14). Also shown in Fig. 14 is the bifurcation diagram pre- lerity for Ka=10 and Re=2.0. Bottom: Bifurcation diagram of film

dicted by our regularized equatiér7). Only steady periodic
wave forms are observed. For intermediate values of Kapitza

thickness versus celerity for Ka=10 and Re=5.0.

number the transition from periodic to homoclinic orbit con- ues of the Kapitza number. This is because the waves outside
sists of period-2 and period-4 solutions up to Reynolds numthe viscocapillary regime and for high Ka are multipeaked
ber of the order K¥°. Figure 15 shows the bifurcation dia- (chaotic wave structureSince the wave celerity depends on

gram ofh vs Ce for Ka=10.0. Period doubling is observed
for Ka=10.0 and Reynolds numbers 2.0 and 5.0. Whefieas
Fig. 16 for a Reynolds number of 2.1 and Ka=13.0 period-2
and period-4 solutions are observed. For higher values of the
Kapitza number, it is found that the transition consists of
period-2, period-4, and chaotic solutions before reaching the
homoclinic orbit. This is shown in Fig. 16 for Ka=22.0 and
Re=5.4. The above observations suggest thatwees are
more regular at low Kapitza numbers and the complexity of
wave structure increases with increasing Kapitza number
even at low Reynolds numbers. Hence the interface is very
dynamic and can exhibit spatiotemporal chaos at low Rey-
nolds numbers for large values of the Kapitza numitet-
perimental wave traces measured in our laborafas} for
Ka=5.9,Re=2.0 and Ka=13,Re=2.1 are shown in Figs.
17(b) and 18b), respectively. It could be seen from these
wave traces that waves are more regular at low Kapitza num-
ber for the same Reynolds number. In Figs. 17 and 18, ex-
perimental wave traces are compared to numerically simu-
lated wave profiles for Ka=5.9,Re=2.0 and Ka=13,Re
=2.1.

A comparison of experimental daf&] with numerical
simulation results for maximum wave amplitudes in the vis-
cocapillary regimgWe>1 or Re<Ka®®) is shown in Fig.

19. The plot shows that the model results are in good agree-
ment with experimental data in the viscocapillary regime.

1.0445 ]
1.0443 Sul.Jslt(r:te Film
€58
1.0419
)/
......... 1.1 A Ka=13.0
1.0
g Flat film Re=2.1
h N fd solution
¥
""'.
10 271 282 30 Ce
Cehom Cehopf
%.i02 Substrate Film
1..08 - Thickngess
g NV
Lo g M Ka=22.0
’ = > " { Flatfilm Re=54
h g_ \\ ',,’ solution
2 /../, -
1.0 2.38 255 3.0 Ce
Cehom Cehvpf

FIG. 16. Top: Bifurcation diagram of film thickness versus ce-

However, the model underpredicts the maximum wave amierity for Ka=13 and Re=2.1. Bottom: Bifurcation diagram of film
plitudes outside the viscocapillary regime and for high val-thickness versus celerity for Ka=22 and Re=5.4.
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z FIG. 17. Top: Numerical wave traces obtained

from Eq. (43) for Ka=5.9 and Re=2.0. Bottom:
1.06 Experimental wave traces for Ka=5.9 and Re
1.04 1 =2.0.
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the wave amplitude, the probability of wave merging andcapillary regime and for high values of the Kapitza number.
splitting increases when the waves are multipeaked. Thesehe traveling wave analysis cannot be used to explain ex-
phenomendmerging and splitting of wavesannot be ac- perimental data once the wave structure becomes nonperi-
counted for in the traveling wave coordinate system anddic.

hence the wave amplitudes are under predicted in the travel- Figure 20 shows the plot of maximum wave amplitude
ing wave coordinate for Weber numbers outside the viscoversus 1/We for Ka=13 computed using the new equation.

11
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FIG. 18. Top: Numerical wave traces obtained

Z from Eq. (43) for Ka=13 and Re=2.1. Bottom:
14 Experimental wave traces for Ka=13.0 and Re
=2.1.
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1 ' ' L This behavior, observed only for some range of fluid viscosi-
ties, is in qualitative agreement with the model predictions.
These experimental results on wave suppression will be pub-
lished separately. It should be noted here that the assumption
B 7 We>1 for which the model is derived fails in the inertial
L i regime and hence the model predictions are quantitatively
H. & off. However, the model shows correct qualitative features.
Equation(44), obtained by replacing the time derivative

in Eq. (43) with a spatial derivative is also integrated in the
traveling wave coordinate. Comparison of the maximum
wave amplitudes predicted by E@l4) to experimental data
A shows that it overpredicts the wave amplitudes in the visco-
capillary regime(Re< Ka%%). More important, Eq(44) pre-
dicts nonphysical wave celerities for Reynolds number of the
order Re~Ka®®°. The phenomenon of wave suppression in
the inertial regime which is captured qualitatively by Eq.
0.01 (43) is not predicted by Eq(44) . The O(¥%}) and higher

0.01 1/We 01 order terms neglected in E¢4) while exchanging time de-
rivative with spatial derivative become important at Weber

FIG. 19. Co_mparlson of expe_rlmental and_numerlcal S|mula'[|onnumbers of order unity. Since thg, term in Eq.(43) retains
results on maximum wave amplitudes. The triangles denote EXPerly, ose nealected terms. it predicts the wave supbression
mental data and the dots are numerical simulations from(4g). 9 P Pp

qualitatively. The inertial effects are not completely ac-
The plot shows that the double zero scaling is good neafounted for in Eq(44) when the time derivative which is
1/We— 0. The wave amplitudes are found to increase ralppresent in the inertial term is replaced with a spatial deriva-
idly in the viscocapillary regiméWes 1) with increasing tive that comes from viscous contribution. Based on the lin-
1/We or Reynolds number. But for Weber numbers weear stability results and traveling wave analysis it could be
~0O(1) the increase in wave amplitudes becomes graduaﬁeen that Eq.43).|s a bett_er modgl than E¢14) fpr describ-
Ing wave evolution on viscous films. Integrating the model

For We<1 the wave amplitudes are found to decrease. Fo'EE (43)], neglecting the vi nd or ; rrection
lowing this observation, we have recently conducted experii 9. 7h3h’2 ﬁg ec thg t tk? SCous and pressu el'tc?j ectio
ments on vertically falling films in the viscous reginig3 erm , Shows that the maximum wave amplitudes are

<Ka<693. In these experiments, the pipe diameter and®Ve! predict(_ad and the solution inerges even in the visco-
. . : ' . capillary regime. Hence the nonlinear terh® acts as a

fluid physical propertieska numbey were fixed, the flow rowth arresting term and cannot be ne Iectexd

rate (Re) was varied, and the maximum wave amplitude was) 9 9 '

determined as a function of Re. It was found that the wave

amplitude initially increased with flow rate, reached a maxi- IX. CONCLUSIONS

mum (around We values of order unjtgnd then decreased. In this work, the scaling, K& O(1) and a®We~O(1), is

iy presented to develop low-dimensional models for vertically
. falling viscous films. Using the scaling proposed, an alterna-

[ 14

0.1

[ 4
>
Ll

1 T IIIIIII| T

tive evolution equation and its regularized version are de-
rived for describing waves on the surface of a falling film in
andas 8 . the viscocapillary regiméwWe> 1 or 0<Re<5 Ka*°). The
. alternative equations include viscous dissipation and pres-
sure correction terms that are missing in the existing single
evolution equations. In particular, we have shown that both
3h*h,, and 7h3h>2( terms are necessary for quantitative de-
scription of wave amplitudes in the viscocapillary regime.
The exchange between time and space derivatives which was
o used in earlier models is shown to be inaccurate. Though
replacing time with a spatial derivative recasts the evolution
equation into a form conducive for analytical and numerical
analysis, it changes the predictions of the equation both
Lol Lol Lo i T . .
0.010 o o ; 0 quallta}tlvel_y anc_j quantltatlvel_y. It should be emphasized that
) ) for falling films, it is the magnitude of the Weber number that
1/We . . . . . .
determines the viscous and inertia dominated regimes, and
FIG. 20. Maximum film thickness versus 1/We for Ka=13.0. not the Reynolds numher
The triangles denote the numerically determined maximum film An important outcome of numerical studies of the new
thickness while the circle@nd the ling denote the scaling near the equations is that the wave structure is not always chaotic but
double zero eigenvalue obtained from local bifurcation analysis. becomes regular for low Kapitza numbers in the viscocapil-

H =252/We
max
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lary regime. For a fixed Reynolds number, the wave structure

i i +h%h,,) | =0.
becomes more and more complex as the Kapitza number is 22
increased. The regular structure exhibited by the waves at
low Kapitza numbers could be used to understand wavy filmTrhis equation may be compared to the evolution equation for
flow in more complex geometries. This model also predictghree dimensional waves that was derived by Atherton and
qualitatively suppression of waves for values of Weber numHomsy [19] using the traditional long-wavelength scaling

ber around unity. [Re~0O(1) and o> We~O(1)]. To ordera, the three dimen-
sional long-wavelength equation is
ACKNOWLEDGMENT e+ 3, + 2 { 3 e s REWE o s Z)]
This work was partially supported by a grant from the dx[ 10 12
Institute for Space Systems Operations at University of J | Re We , 5
Houston. + o"_Z 12 (h*h,+h°h,,) | = 0.

As mentioned earlier, in this scaling the missing viscous and

APPENDIX A: EVOLUTION EQUATION FOR pressure correction terms appear at higher orders.

3D FILM FLOWS

The 3D version of Eq(43) can be derived and is given by APPENDIX B: SMALL-AMPLITUDE EXPANSION

P 3 5 A small-amplitude expansion of E¢43) can be derived
h, + 3h’h, + 3({3h4hxx+ 7h%h? + Ehe’hﬁ - §h4hzz and leads to an equation of the form
5 4 27 6 J | Re We . 7+t S1mxxx~ Samrxt xx t xxxx= 0,
R g Revh g+ s (e where §,=3.807 Wé1/Ka®¥s and 8,=1.477 K&/5/We'V/10

Further details and comparison with the Kuromoto-
+hh,,,) | + 9 1—1h3h he + 1—9h4h + Re We(hSh Sivashinsky equation can be found in Panga and Balakotaiah
XX &Z 2 Z''X XZ 12 XXZ [11]

[1] W. Nusselt, Z. Ver. Deut. Ing. 60, 541916. [12] P. Aussillous and D. Quéré, Phys. Fluid®, 2367(2000.
[2] P. L. Kapitza and S. P. Kapitza, Zh. Eksp. Teor. F18, 105 [13] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Philos. Trans. R.
(1949. Soc. London, Ser. 2272, 47 (1972.
[3] T. B. Benjamin, J. Fluid Mech?2, 554 (1957). [14] A. L. Frenkel and K. Indireshkumar, Phys. Rev.@®, 4143
[4] H. C. Chang, Annu. Rev. Fluid Mect26, 103 (1994). (1999.
[5] H. C. Chang and E. A. DemekhiGomplex Wave Dynamics [15] T. Ooshida, Phys. Fluid41, 3247(1999.
on Thin Films(Elsevier Scientific, New York, 2002 [16] A. Pumir, A. Manneville, and Y. Pomeau, J. Fluid Mect85,
[6] D. J. Benney, J. Math. Phygi5, 150 (1966. 27 (1983.
[7] L. T. Nguyen and V. Balakotaiah, Phys. Fluids2, 2236 [17] H. C. Chang, Phys. Fluids A, 1314(1989.
(2000. [18] L. T. Nguyen, Ph.D. thesis, University of Houston, 1999.
[8] B. Gjevik, Phys. Fluids13, 1918(1970. [19] R. W. Atherton and G. M. Homsy, Chem. Eng. Commu.
[9] C. Nakaya, Phys. Fluid48, 1407(1975. 57 (1976.
[10] C. Ruyer-Quil and P. Manneville, Eur. Phys. J. 8 277 [20] S. W. Joo, S. H. Davis, and S. G. Bankoff, Phys. FluidSA
(1998. 231(1999).
[11] M. K. R. Panga and V. Balakotaiah, Phys. Rev. L3, [21] C. Ruyer-Quil and P. Manneville, Eur. Phys. J. B5, 357
154501(2003. (2000.

036310-18



